
Department of Mathematics
and Computer Science (IMADA)

Master’s Thesis

Modeling Timetabling Problems
in Constraint Programming

Author:
Brian Alberg

Supervisors:
Marco Chiarandini

Jacopo Mauro

June 1, 2019

Project Description
Timetabling is the activity of scheduling events to happen at a particular time.
It is an important and active area of research with a wide range of applications
in both the academic world and the industry. Timetabling problems are however
often non-trivial, and in Computer Science they are NP-hard. Large instances of
timetabling problems, like those found at large universities, often contain hundreds
of events involving courses, rooms and teachers, and thousands of students, all
of which impose certain constraints on the events. This makes the problem of
timetabling extremely difficult to solve by hand.

Constraint programming (CP) revolves around two central aspects, namely declara-
tive modelling languages and solvers, including local search and exhaustive methods.
Modelling languages are designed to abstract the problem from the solver, and
MiniZinc (Nethercote et al., 2007) does this by providing translation to a low-
level intermediate solver-input language called FlatZinc. This provides a natural
approach to modelling of real-world problems and makes it easy to adapt the
model to new situations, while the FlatZinc language makes it possible to solve the
same model with a wide variety of FlatZinc-compatible solvers and compare the
performance of different solvers.

The aim of this project is to investigate how educational timetabling problems
can be modelled in constraint programming and how efficient different types of
constraint programming solvers are at finding feasible or optimal solutions to these
problems.

The focus is on two different timetabling problems. The IMADA timetabling
problem is the timetabling problem of scheduling the elective courses offered by
the Department for Mathematics and Computer Science at the University of
Southern Denmark. The ITC2019 timetabling problem is a timetabling problem
presented by the International Timetabling Competition 2019 (Müller, Rudová,
and Müllerová, 2018) where timetabling data from several universities around the
world is provided in a uniform format. The two models differ and we will discuss
the differences.

In the course of the project I will:

• Review literature on timetabling,

• learn the MiniZinc and FlatZinc modelling languages,

• model the IMADA timetabling problem and the ITC 2019 timetabling problem
and discuss their relationship,

i

• implement the models in MiniZinc or FlatZinc,

• carry out experimental tests on the models using a variety of different solvers
and analyse the results,

• sum up the insight gained from the previous points,

• write a report using appropriate scientific language of the field.

ii

Abstract

Timetabling is the activity to schedule events to happen at a particular time. It is an
important problem that has to be resolved in both the academic world and industry.
Previous efforts on the research of timetabling problems for universities have often
focused on single-week timetabling problems. In this thesis, we argue that these
do not accommodate the complexity of real-world university timetabling problems.
Instead, we present two formulations, a compact and an extended formulation, for
modeling of complex full-semester timetabling problems, along with models in the
MiniZinc language and a method for generating FlatZinc models directly from
instance files. By presenting how a problem in terms of the compact formulation
can be encoded into a problem in the extended formulation, we show the important
differences of the formulations, and argue that since timetabling problems differ,
different types of models are needed depending on the problem. Finally, we found
that solvers based on local search techniques might have an advantage in solving
the presented flexible timetabling problems, but also that constraint programming
solvers are generally not effective enough to solve these complex problems.

iii

Acknowledgements
I would like to thank a number of people for supporting me during writing of this
thesis. First I would like to acknowledge and thank Asc. Prof. Marco Chiarandini
and Asc. Prof. Jacopo Mauro for always finding time in their busy schedules for
discussions and guidance, and for pushing me forward. I would like to thank my
wife Nikita, my daughter Aya and the rest of my family for bearing with me and my
late work hours. Finally, a big thanks to the people of the SDU eScience Center,
especially Dan Thrane, Jonas Hinchely and Henrik Schulz for their support and
our daily lunches, Markus Lund for being there when I needed a day off, and the
people of IMADA for making it such a nice place to learn.

v

Contents

1 Introduction 1

2 A Compact Formulation: the IMADA case 4
2.1 The IMADA Timetabling Problem 5
2.2 MiniZinc Model . 6

2.2.1 Notation . 6
2.2.2 Hard Constraints . 8
2.2.3 Soft Constraints . 12
2.2.4 The Objective Function . 16

3 An Extended Formulation: the ITC2019 case 17
3.1 The ITC2019 Problem . 17
3.2 Processing of Instances . 26

3.2.1 Sectioning of Students . 26
3.2.2 Schedules and Classes . 29

3.3 The MiniZinc Model . 33
3.3.1 Data Creation . 33
3.3.2 The Model . 38

3.4 The FlatZinc Model . 44
3.4.1 The fzn Module . 44
3.4.2 The itc2fzn Program . 46

4 Formulation Encoding 65
4.1 Differences . 65
4.2 Encoding . 66

5 Computational Results 71
5.1 Instances . 72
5.2 The Compact Formulation . 73
5.3 The Extended Formulation . 74

5.3.1 The MiniZinc Model . 74

vi

CONTENTS

5.3.2 FlatZinc Generation . 76
5.3.3 Solving the FlatZinc Models 76

5.4 Discussion . 77

6 Conclusion 86

7 Future Work & Known Issues 88

vii

1 Introduction

Timetabling is the activity of scheduling events to happen at a particular time. It is
an important and active area of research with a wide range of applications in both
the academic world and the industry. Timetabling problems are often nontrivial,
and in Computer Science they are NP-hard (Burke et al., 2010). Large instances of
timetabling problems, like those found at large universities, often contain hundreds
of events involving courses, rooms and teachers, and thousands of students, all
of which impose certain constraints on the events. This makes the problem of
timetabling extremely difficult to solve by hand.

Bettinelli et al. (2015) gave an overview of curriculum-based course timetabling
(CB-CTT) and defined the problem in mathematical terms, along with possible
variations and extensions to the problem. A wide range of formulations and
techniques published since the 90s were presented, reviewed and benchmarked on
different timetabling problems, but ultimately it was not possible to determine
any “best” method. It was argued that for timetabling problems in a university
context, the problem differs slightly depending on the type of university, and these
problems might deviate even more from timetabling problems in industry. As an
example, some universities might be divided into multiple departments at different
locations, in which case the travel distance between locations has to be included
as a part of the problem formulation, while at single-building universities, this is
usually not a problem. It was also argued that further research is needed on the
topic of CB-CTT, and especially on which techniques excel depending on the type
of the timetabling problem.

Müller, Rudová, and Müllerová (2018) gave an outline of existing research on
university course timetabling and to encourage further research in the area of
educational timetabling, the International Timetabling Competition 2019 (ITC2019)
was introduced. A detailed definition of a generalized but flexible timetabling
problem was given, along with a presentation of an XML format for specifying
timetabling problems in a uniform format. Anonymized timetabling instances of
various size and complexity, from universities around the world was made public to
researchers who was invited to find solutions to the provided instances. Prizes will

1

CHAPTER 1. INTRODUCTION

be given to the groups with the best overall solutions, or lower bounds, found for
the provided instances in different categories.

Constraint programming (CP) revolves around two central aspects, namely declara-
tive modeling languages and solvers, including local search and exhaustive methods.
Modeling languages are designed to abstract the problem from the solver, such
that the same solver can be used for different models. Therefore, many solvers
include their own modeling language, however this complicates things if multiple
solvers are wanted for a project, as the researcher will have to learn a modeling
language for each solver.

In Nethercote et al. (2007) MiniZinc was presented as a simple but expressive solver-
independent modeling language. MiniZinc makes it possible to abstract the model
from the solver by providing translation to a low-level intermediate solver-input
language called FlatZinc. This provides a natural approach to modeling of real-
world problems in MiniZinc and makes it easy to adapt the model to new situations,
while the FlatZinc language makes it possible to solve the same model with a wide
variety of FlatZinc-compatible solvers and compare their performance.

MiniZinc supports several features such as functions, predicates, where predicates
are essentially functions with a boolean return type and annotations which can be
used for defining search behavior for the solver and more. Functions and predicates
in MiniZinc can be user-defined even though many build-in predicates and functions,
named global constraints are included with MiniZinc. Furthermore, it is possible
with MiniZinc to abstract data from the model, by the definition of MiniZinc Data
(Dzn) files. Different Dzn files can be used on the same model if the data file
contain data for a set of stated definitions in the MiniZinc model.

Earlier works on university timetabling, such as Bettinelli et al. (2015), have often
revolved around the idea of scheduling classes for a single week and then replicating
this schedule for all weeks of the semester. This way of scheduling is however not
realistic for real-world timetabling problems where classes might not occur on a
weekly basis, teachers might have planned vacation, or where external conditions
affect days of only some weeks such as holidays or isolated events at the university.
This way of formulating timetabling problems is simply too rigid to accommodate
the complexity of timetabling problems at modern-day universities.

The aim of this thesis is to investigate how realistic educational timetabling problems
can be modeled in constraint programming and how efficient different types of
constraint programming solvers are at finding feasible or optimal solutions to these
problems. For this, MiniZinc and FlatZinc will be utilized along with a range of
different solvers.

Two different formulations will be presented. A compact formulation, which will

2

be presented in terms of the IMADA Timetabling Problem. This problem is the
timetabling problem of scheduling the elective courses offered by the Department
for Mathematics and Computer Science at the University of Southern Denmark
and revolves around scheduling of classes into suitable times and rooms, with
constraints imposed on the problem by students and teachers. In Chapter 2.1 the
compact formulation in terms of the IMADA Timetabling Problem will be described
and a solution in terms of a MiniZinc model will be presented.

An extended formulation will be presented in terms of the problem introduced for
the International Timetabling Competition 2019 (ITC2019). This problem revolves
around choosing suitable time patterns, defined in terms of weeks, days, start time
and duration for a set of classes. This problem also involves choosing which classes
a student should attend, according to a set of courses that the student is signed
up for. In Chapter 3.1 the extended formulation will be described in terms of
the ITC2019 problem and two models will be presented in MiniZinc and FlatZinc
respectively.

The compact and extended formulations are both flexible formulations and does not
suffer from the inflexibility of earlier works on timetabling. This means that the
load can change through-out the weeks and that they are both able to accommodate
disruptions in a schedule at any time needed. However, the formulations do differ
and this difference will be discussed and analyzed in Chapter 4 where a method for
transforming a model in compact form into a model in extended form will also be
presented.

In Chapter 5 results from a number of tests on the implemented models will be
presented, along with a discussion of the results with respect to the two formulations,
and a conclusion of the findings in this thesis will be given in Chapter 6.

3

2 A Compact Formulation:
the IMADA case

In Alberg (2018), Solving the IMADA Timetabling Problem using Constraint-based
Local Search we wrote about the IMADA Timetabling Problem and presented a
mixed-integer linear programming (MILP) formulation of the problem. The IMADA
Timetabling Problem was modeled and attempted solved using the general-purpose
local search solver LocalSolver1, along with a wide range of problems from the
MIPLIB 2010 Problem Set presented in Koch et al. (2011). Relaxation techniques
were implemented, but ultimately it was not possible to find any feasible solutions
for the IMADA Timetabling problem using LocalSolver. The definition of the
IMADA Timetabling Problem defined in this chapter reuse some components from
Alberg (2018), but is mostly rewritten.

In this chapter a Compact formulation will be stated in terms of the IMADA
Timetabling Problem which is the timetabling problem of scheduling the elective
courses offered by the Department for Mathematics and Computer Science at the
University of Southern Denmark. Real-world data for a semester was given, along
with a mixed integer linear programming (MILP) implementation. The MILP
implementation reads data from different sources and constructs a data file for use
as input for the MILP model.

As mentioned, MiniZinc allows this separation of model and data as well by
MiniZinc Data. This makes it possible to use the same model on different data
sets. This feature was used by extending the MILP implementation such that the
it was able to construct a Dzn data file for use with a MiniZinc model.

A constraint programming model was made for the IMADA Timetabling Problem
in MiniZinc and solved using different solvers. The problem will be described
in Section 2.1, and the implemented MiniZinc model as well as the problem in
constraint programming terms will be presented in Section 2.2.

1http://localsolver.com

4

http://localsolver.com

2.1. THE IMADA TIMETABLING PROBLEM

2.1 The IMADA Timetabling Problem
The IMADA Timetabling Problem is a problem of scheduling classes of elective
courses into suitable rooms and times within a semester. In this chapter, a class,
i.e. a lecture or exercise session, will be referred to as an event. Thus, an event is a
single occurrence of a class of a course.

An event is scheduled when a suitable time and room has been chosen. A time slot
for an event is represented by a week, day and time of the day, where time is a
section of a day. For this case of the IMADA Timetabling Problem, a day is divided
into sections or times of 1 hour each. Each event has a duration represented by the
number of times needed for the event and is fixed to a specific week.

The problem involves a number of hard constraints that must be satisfied for a
feasible solution to exist, and a number of soft constraints that does not prevent
a feasible solution, but where a violation of the constraint adds a penalty to the
objective function. The goal of solving the IMADA Timetabling Problem is to find
a solution that satisfies all hard constraints, and minimizes the penalty imposed on
the objective function.

The hard constraints can be defined as:

H1 All events must be scheduled exactly once,

H2 Multiple events may not occupy the same room at the same time,

H3 An event may not be assigned to a room if it is declared unavailable at the
time where the event takes place, or if the room is unsuitable for the course
which the event is a part of,

H4 An event should not be scheduled in a time slot where it would not have time
to finish,

H5 An event should not be scheduled into time slots which are not allowed by
calendar,

H6 A teacher may only teach one class at a time, and only if the teacher is available,

H7 For any course, only one event for that course must occur per day,

H8 For any course in each week, introduction events precede exercise events, and
exercise events precede laboratory events,

The soft constraints can be defined as:

S1 Minimize the number of student conflicts, meaning the number of events a
student has at any point in time,

5

CHAPTER 2. A COMPACT FORMULATION: THE IMADA CASE

S2 Events of the same type should preferably be scheduled to the same day of the
week and the same time slot of the day,

S3 Events of the same type should preferably be scheduled in the same room every
week,

S4 A teacher should not teach more than one event per day,

S5 Each student should preferably not have to attend more than 3 classes per day,

S6 Minimize the number of events occurring outside a normal work schedule
(i.e. 9:00 to 17:00).

A feasible solution is found when all events have been scheduled such that none of
the hard constraints are violated.

2.2 MiniZinc Model
In this section code samples of the MiniZinc model for the compact formulation
will be presented. The full MiniZinc model can be found in the (Project Repository
n.d.), namely the file imada-mzn/models/imada-int.mzn.

2.2.1 Notation
For the definition of the MiniZinc model for the IMADA Timetabling problem the
following notation is used:

W Set of weeks,

D Set of days of a week,

hs, he The starting time and ending time of a day, respectively,

C Set of courses,

α Set of teachers,

β Set of students,

R Set of rooms,

Or Set of time slots where room r ∈ R is occupied

E Set of events,

De Duration for event e ∈ E given as a number of time slots,

We Defined week of each event e ∈ E.

6

2.2. MINIZINC MODEL

Ce Defined course of each event e ∈ E.

As The set of events that student s is attending.

P Set of pairs of events ei, ej ∈ E, where ei should preceed ej for every pair.

ρ Set of pairs of events ei, ej ∈ E, where ei and ej is of the same type (i.e. lecture,
exercise session, etc.), and Cei

= Cej
.

In the model, three definitions of a time slot is introduced. This is done by flattening
the time definitions week, day and time into a single definition. A set of time
slots Tw denote time slots within a week and T denote time slots over all weeks
and days. They are defined as follows, where n is the number of sections per day
he − hs:

Tw =
{

0, 1, . . . , |D|n− 1
}

(2.1)

T =
{

0, 1, . . . , |W | · |D|n− 1
}

(2.2)

A visual example can be seen in Table 2.1.

Mon Tue · · · |D|

1 0 n · · · (|D| − 1)n
2 1 n+ 1
...
n n− 1 2n− 1 · · · |D|n− 1

Mon · · ·

1 |D|n · · ·
2 ...
... ...
n

Table 2.1: Visual representation of time slots for n sections per day

Every event has to be scheduled into one or more time slots and a room. The time
slots and room can be flattened into the definition of a slot. Every slot in the set
of slots S will then correspond to a unique time on a given day in a given week in
a given room.

The set of slots S can be defined as:

S =
{

1, 2, . . . , |W | · |D| · (he − hs) · |R|
}

(2.3)

A visual example of slots S can be seen in Table 2.2.

By using the definitions of time slot and slot, the problem of finding a feasible day,
week, time and room for an event e, can be simplified to finding a feasible slot for
event e. This is useful for defining constraints, as seen in this section.

7

CHAPTER 2. A COMPACT FORMULATION: THE IMADA CASE

Mon Tue · · · |D|
ri rj ri rj · · · ri rj

1 1 2 2n+ 1 2n+ 2 · · · · · · 2n(|D| − 1) + 2
2 3 4
...
n 2n− 1 2n · · · · · · · · · · · · 2n|D|

Mon
ri rj · · ·

1 2n|D|+ 1 2n|D|+ 2 · · ·
2
...
n

Table 2.2: Visual representation of slots for two rooms ri, rj for n sections per day

The variables for the model will now be introduced. Even though the definition
of slots is able to simplify the problem to having one variable per event, multiple
other arrays of size |E| are kept to simplify the constraints. These are

• We ∈ W indicate the chosen week, for event e.

• De ∈ D indicate the chosen day, for event e.

• He ∈ H indicate the chosen time of the day for event e.

• Re ∈ R indicate the chosen room, for event e.

Decision variables representing time slot and slot for an event e is defined as:

• Te ∈ T indicate the chosen time slot for event e.

• Se ∈ S indicate the chosen slot for event e.

These decision variables are defined using channelling constraints, such that:

Te = He + (De − 1) · (he − hs) + (We − 1) · |D| · (he − hs)
Se = Te · |R|+Re

2.2.2 Hard Constraints
In this section the hard constraints from Section 2.1 will be described. By defining
variables W , D, H and R, the model already enforces that every event is scheduled
exactly once (the hard constraint H1), and because of the domains of the variables,
H5 is also enforced. However, the week of event e should be restricted to be within
the week defined for the event, We.

This is done by retricting We to We as follows:

We = w ∀e ∈ E, w ∈ W where w = We

8

2.2. MINIZINC MODEL

The corresponding MiniZinc constraint is

constraint forall(e in Events, w in Weeks where InWeek[e]==w)(
eventWeek[e] = w

);

Constraint H2 states that multiple events may not occupy the same room at the
same time. This is enforced by using one of MiniZincs build-in global constraints,
cumulative. The cumulative constraint is used for describing cumulative re-
source usage, where in this case the resource is stated in terms of rooms, which
are used by events. The cumulative constraint is defined as follows: (Peter
J. Stuckey, 2018)

1 cumulative(array[int] of var int: s, array[int] of var int: d,
2 array[int] of var int: r, var int: b)

where a set of tasks given by start times s, durations d and resource requirements
r never requires more than a global resource bound b at any one time.

However, before it is possible to use the cumulative constraint the start times
should be defined. The duration D of an event does not work with the previously
defined slots S ∈ S, since two subsequent slots Sx and Sx+1 points to two different
rooms if |R| > 1. The set of time slots T does not include the notion of rooms, but
can be used for an alternative representation that does.

If the starting time of an event in a room is defined as

µe = Te · |T | · (Re − 1)

then subsequent time slots in the same room will give subsequent values of µe.
Thus, µe can be used as starting times for the cumulative constraint, with D
as the durations and since classes only occupy one room at a time, the resource
requirements is 1 for every e ∈ E.

cumulative
([
µe | e ∈ E

]
, D, [1 | e ∈ E], 1

)
The MiniZinc constraint is defined as

1 constraint cumulative(
2 [Timeslot[e]+numTimeslots*(eventRoom[e]-1) | e in Events],

9

CHAPTER 2. A COMPACT FORMULATION: THE IMADA CASE

3 Duration,
4 RoomsRequired,
5 1
6);

Every room r have an associated set of time slots Or where room r is occupied. A
room should not be chosen for event e if any chosen time slot {Te, . . . , Te + De}
is in the set of occupied slots for the room ORe , as stated in H3. This constraint
corresponds to:

∣∣∣{Te, . . . , Te +De

}
∩ORe

∣∣∣ = 0 ∀e ∈ E (2.4)

Since sets of variables such as {Te, . . . , Te +De} is not well-suppored in MiniZinc,
this is avoided. Instead, another constraint is introduced for each time slot in
{Te, . . . , Te +De} such that,

Te + d 6∈ ORe ∀e ∈ E, d ∈ {0, . . . , De − 1} (2.5)

This prevents events from being scheduled into rooms occupied at the time of the
events, and the corresponding MiniZinc constraint is defined as:

1 constraint forall(r in Rooms, e in Events where eventRoom[e]==r, d in
0..Duration[e]-1)(↪→

2 not(member(RoomOccupied[r], Timeslot[e]+d))
3);

Constraint H4 states that every event should have time to finish within the current
day. For this, He denotes the section of the day for event e, which means that the
constraint can be enforced by

He +De ≤ he ∀e ∈ E (2.6)

which in MiniZinc corresponds to

1 constraint forall(e in Events)(
2 eventHour[e]+Duration[e] <= hourEnd
3);

10

2.2. MINIZINC MODEL

The constraint H6 does in fact state two constraints, namely that a teacher may
only teach one class at a time and a teacher may only teach if the teacher is
available, thus these will be added seperately.

For the first part of H6, the build-in MiniZinc global constraint disjunctive is
used, which restricts a set of tasks given by a set of start times s and a set of
durations d to not overlap:

predicate disjunctive(array[int] of var int: s,
array[int] of var int: d)

This global constraint can be used to model that all classes taught by a teacher
should be disjunctive.

disjunctive
({
Te | e ∈ θt

}
,
{
De | e ∈ θt

})
∀t ∈ α (2.7)

The corresponding MiniZinc constraint is:

1 constraint forall(t in Teachers)(
2 % Can't we just remove the "if" ?
3 if length(e in TeacherEvents[t])(1)>0 then
4 disjunctive(
5 [Timeslot[e] | e in TeacherEvents[t]],
6 [Duration[e] | e in TeacherEvents[t]]
7)
8 endif
9);

For the second part of the constraint, the availability of the teacher is modelled
the same way as for the availabilities of rooms (see H3). That is, where the set of
time slots where a room r is unavailable Or is exchanged with the set of time slots
where a teacher t is busy Bt. If θt is the set of events for teacher t, then

Te + d 6∈ Bt ∀t ∈ α, e ∈ θt, d ∈ {0, . . . , De − 1} (2.8)

enforces that every event taught by a teacher t is only scheduled at times where
teacher t is not marked as busy. The corresponding MiniZinc constraint is defined
as:

1 constraint forall(t in Teachers, e in TeacherEvents[t], d in 0..Duration[e]-1)(
2 not(member(TeacherBusy[t], Timeslot[e]+d))
3);

11

CHAPTER 2. A COMPACT FORMULATION: THE IMADA CASE

As stated in H7 for any course, only one event for that course must occur per
day. Thus, this can be archieved by using MiniZinc’s build-in global constraint
alldifferent. The alldifferent constraint takes an array of variables, and
restrict them to take different values. Thus, H7 can be enforced by restricting the
days of each event of each course to be all different.

alldifferent
({
De | We == w ∧ Ce == c

})
∀w ∈ W, c ∈ C

The corresponding MiniZinc constraint is defined:

1 constraint forall(w in Weeks, c in Courses)(
2 alldifferent(e in Events where InWeek[e]==w /\ PartOf[e]==c)(
3 eventDay[e]
4)
5);

Constraint H8 states that some events should precede other events in time. These
events are given as a set of pairs pi, pj ∈ P , where pi and pj are events, and where
pi should precede pj. The constraint can be enforced by:

Spi
< Spj

∀p ∈{1, · · · , |P |}
whereWpi

=Wpj

The corresponding MiniZinc constraint is:

1 constraint forall(p in 1..numPrecedences where
2 InWeek[Precedences[p,1]] == InWeek[Precedences[p,2]])(
3 Scheduled[Precedences[p,1]] < Scheduled[Precedences[p,2]]
4);

2.2.3 Soft Constraints
In this section, the soft constraints will be described as implemented in the MiniZinc
model. The soft constraints have variable values that are penalized in the objective
function if the conditions on the variables aer not satisfied.

For the model of the soft constraint S1 one of MiniZinc’s global constraints is used.
The function global_cardinality is in MiniZinc clared as:

global_cardinality(array [int] of var int: x,
array [int] of int: c)

and returns an array of the number of occurrences of ci in x ∀i ∈ {1, 2, . . . , |c|}.

12

2.2. MINIZINC MODEL

This is equivalent to the following, where (a → b) ∧ (¬a → c) means that if a is
true, then b, else c:

global_cardinality
(
X,C

)
:

[∑
x∈X

(x = c→ 1) ∧ (x 6= c→ 0) | c ∈ C
]

(2.9)

The global_cardinality function is used to count the number of events a student
s has at any given time slot. That is for each time slot occupied by an event student
s is attending (including its duration), the cardinality for the element of that
timeslot is added by 1. For each element returned by the global_cardinality c,
the absolute value of c− 1 denotes a violation at the given time slot for a student
s. That is, for 0 or 1 events at a given time slot, the violation is 0, while if student
s have 2 or 3 events at a given time slot, the violation is 1 or 2 respectively. This
is given by:

[
|c− 1| | c ∈

[∑
x∈X

(x = t→ 1) ∧ (x 6= t→ 0) | t ∈ T
]]
∀s ∈ β (P1)

where X =
[
Te + d | e ∈ As, d ∈ {0, . . . , De − 1}

]
where the sum of this is the total violations for student s. The MiniZinc constraint
is defined as follows:

1 constraint forall(s in Students)(
2 studentConflicts[s] = sum(c in global_cardinality(
3 [Timeslot[e]+d | e in Attending[s], d in 0..Duration[e]-1],
4 Timeslots
5))(abs(c-1))
6);

The constraint S2 states that events of the same type should preferably be schedule
to the same day of the week, and the same time slot of the day. For this, ρ is used,
which is the set of pairs of events where the events of each pair has the same course
and is of the same type. Thus, for each pair in ρ, the constraint should penalize
the objective function according to the distance between the pair of events’ time
slots within the week. Since Twe is defined as the time slot of event e within a week,
the distance between two events ei, ej ∈ ρ can be found by:

|T wei
− T wej

|

13

CHAPTER 2. A COMPACT FORMULATION: THE IMADA CASE

By this definition, the penalty to be imposed on the objective function can be
defined as:

∑
ei,ej∈ρ

|T wei
− T wej

| (P2)

For the MiniZinc constraint, the penalty is defined for each pair of events in ρ and
summed later. The constraint is defined as follows:

1 constraint forall(p in 1..numPairings)(
2 abs(TimeslotInWeek[Pairings[p,1]] - TimeslotInWeek[Pairings[p,2]]) =

timeDiscrepancies[p]↪→

3);

The soft constraint S3 is defined the same way as constraint S2, just for the rooms
of a pair of events in ρ. That is:

∑
ei,ej∈ρ

|Rei
−Rej

| (P3)

This is actually incorrect. A short discussion about this is added to Chapter 7.

The constraints S4 and S5 states that the number of events per day for teachers
and students respectively should be minimized. For a teacher a penalty is im-
posed on the objective function for each event that exceeds one event for each
day. The number of events per day is counted using the MiniZinc build-in function
global_cardinality, as previously defined in this section. For the input parame-
ters, X is an array of unique identifiers of the day of each event, such that each
element xe ∈ X is the unique identifer of a day, for event e and C is an array of
unique identifiers for each day.

The identifier of a day for an event e, where W1 denotes the number of the first
week, is defined as:

(We −W1)|D|+De

That is, given a problem with weeks of 5 days, if an event is scheduled on Monday
of the first week of the semester the unique identifier of the day will be 1, while if
an event is scheduled on Tuesday of the second week of the semester the unique
identifier of the day will be 7, etc.

14

2.2. MINIZINC MODEL

By defining:

Xt =
[
(We −W1)|D|+De | e ∈ θt

]
and

C =
[
(w −W1)|D|+ d | w ∈ W, d ∈ D

]
The number of violations of this constraint for a teacher t can be defined as:

[∑
x∈Xt

(x = c→ 1) ∧ (x 6= c→ 0) | c ∈ C
]

∀t ∈ α (P4)

In MiniZinc terms the constraint is defined like above, but the penalty imposed
on the objective function is defined as the number of events on the day with the
maximum number of events for each teacher, where the minimum penalty is 1. This
tells the solver to minimize the number of events on the day with the maximum
number of events for each teacher. The constraint is defined as follows:

1 constraint forall(t in Teachers)(
2 max(global_cardinality(
3 [(eventWeek[e]-firstWeek)*numDays + eventDay[e] | e in

TeacherEvents[t]],↪→

4 [(w-firstWeek)*numDays + d | w in Weeks, d in Days]
5)) <= maxEventsxDayxTeacher[t]
6);

For S5, the same technique is used for the minimization of the number of events per
day for each student. However, since this constraint should only impose a penalty
on the days where a student have more than 3 events, the minimum penalty is set
to 3, that is, the lower bound of the variable representing the penalty imposed on
the objective function. If the imposed penalty of S5 is 3, it means that the student
does not have any days where the student should attend more than 3 events. The
equation is kept for reference, where θs of Xs is the set of events for student s.

[∑
x∈Xs

(x = c→ 1) ∧ (x 6= c→ 0) | c ∈ C
]

∀s ∈ β (P5)

The constraint S6 states that the number of events occuring outside a normal work
schedule, such as 9:00 to 17:00, should be minimized.

This is modelled by imposing a penalty on the objective function, if the time section
of the day where an event e starts He is less than a defined good start time gs, or

15

CHAPTER 2. A COMPACT FORMULATION: THE IMADA CASE

if the time section of the day where e ends, He +De is greater than a defined good
ending time gn. The penalty is defined according to the number of time slots from
gs and gn, such that a greater penalty is imposed the more the the start or end of
e violate gs and gn respectively.

(He +De > gn → He +De − gn) ∧ (He < gs → He − gs) ∀e ∈ E (P6)

For the MiniZinc constraint, this penalty is stored in an array for each event e
which is summed and added as a penalty to the objective function. The constraint
in MiniZinc is defined as:

1 constraint forall(e in Events)(
2 if eventHour[e]+Duration[e] > goodDayEnd then
3 eventHour[e]+Duration[e]-goodDayEnd = badSlots[e]
4 else if eventHour[e] < goodDayStart then
5 goodDayStart-eventHour[e] = badSlots[e]
6 endif
7);

2.2.4 The Objective Function
The penalties are now defined in Equations P1 through P6. For minimization in
minizinc these are passed as the variables to be minimized by the solver.

minimize P1 + P2 + P3 + P4 + P5 + P6

In MiniZinc the objective function is then defined as follows:

solve :: int_search(Scheduled, smallest, indomain_min, complete)
minimize sum(maxEventsxDayxTeacher) +

sum(timeDiscrepancies) +
sum(roomDiscrepancies) +
sum(maxStudentOverlaps) +
sum(maxEventsxDayxStudent) +
sum(badSlots);

16

3 An Extended Formulation:
the ITC2019 case

In this chapter a extended formulation will be presented in terms of the problem
presented for the International Timetabling Competition 2019 (ITC2019).

The International Timetabling Competition is a timetabling competition aimed
at motivating further research on complex university course timetabling problems
and is supported by the international series of conferences on Practice and Theory
of Automated Timetabling (PATAT). Data sets containing real-world instances of
timetabling problems, contributed by universities around the world, is provided
and participants of the competition compete to find the best feasible solution for
each instance. In 2018 the fourth International Timetabling Competition 2019
(ITC2019) was announced in Müller, Rudová, and Müllerová (2018).

A walk-through and definition of the ITC2019 problem will be described in Sec-
tion 3.1. During the course of this thesis, two models were made in an attempt to
solve the ITC2019 problem, in MiniZinc and FlatZinc respectively. A shared depen-
dency for sectioning students of the ITC instances will be presented in Section 3.2.1,
and a section dedicated to schedules and classes can be found in Section 3.2.2. The
MiniZinc model is written in MiniZinc, and a program was developed in Python to
generate data for use with the model. This will be introduced in Section 3.3. For
the implementation in FlatZinc, instead of having one model for all instances, a
program was developed which generates a model in FlatZinc from an instance file.
This will be introduced and described in detail in Section 3.4.

3.1 The ITC2019 Problem
The ITC2019 problem is a generalized CB-CTT problem where classes have to be
chosen for students among courses they have signed up for, and rooms and times
have to be chosen for the set of classes. The problem involves many variables and
constraints which will be described here.

17

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

A course is defined as a number of configurations where each configuration have
one or more subparts, which in turn have one or more classes. A limit is imposed
on each class, defining the maximum number of students that can attend that class,
and a class may have a parent class defined which means that a student which
is assigned to attend the class must also attend its parent class. Ultimately, a
course structure can be seen as a tree structure. An example of this can be seen in
figure 3.1, for a course C1 with two configurations F1,F2, three subparts P1, P2, P3
and six classes C1, C2, . . . , C6.

Courses

Configurations

Subparts

Classes

C1

F1

P1

C1 C2

F2

P2

C3 C4

P3

C5 C6

Figure 3.1: Example of course structure for a course C1

This structure allows for complex course structures to be build, with multiple types
of classes, i.e. lectures, exercise and laboratory sessions. It also makes it possible
for a teacher to define multiple parallel sections or classes for the same course, or
courses where some classes are for all students attending the course, while other
classes are just for a subset of the students.

A student have a set of courses that he/she is signed up. For every course a student
is signed up for, exactly one class of each subpart of a single configuration of the
course have to be chosen for that student. This selection of a class for a student
will be referred to as sectioning of the student. Cases where a student is sectioned
into classes that overlap in time should be minimized, but does not cause a solution
to be infeasible.

Each class has a number of times and a number of rooms available for that class. A
time for a class is defined as a pattern of weeks, days, a start time and a duration
of the class. An example for a possible time pattern for a class could be:

Week 1,3 and 5 on Mondays and Thursdays at 8:00am for 2 hours

18

3.1. THE ITC2019 PROBLEM

One of these time patterns will be referenced to as a pattern or a schedule in this
report, and the duration of a pattern will also be referred to as the length.

A room is defined by a number of time patterns as well, defining times when the
room is unavailable. These will be referred to as the unavailability patterns of the
room.

For every class exactly one room and one schedule have to be chosen among the
available schedules and rooms for that class. If two or more classes are sharing a
room, their schedules should not overlap at any given point in time, and a chosen
pattern for a class should not overlap with any unavailability patterns of the chosen
room.

Every feasible schedule and room for a class is associated with a penalty which
makes it possible to prefer some rooms or schedules over others. This penalty
should be minimized.

In shorter terms the following constraints can be defined:

(CS) Class Schedule A class can only be scheduled into one of the schedules defined
for that class,

(CR) Class Room a class can only be scheduled into one of the rooms defined for
that class,

(SO) Schedule Overlap only one class per room at any given time,

(RU) Room Unavailable a class can not be scheduled into a room where the schedule
of the class overlaps with a time where the room is marked as being occupied,

(SP) Schedule Penalty for each class the penalty of the chosen schedule should be
minimized,

(RP) Room Penalty for each class the penalty of the chosen room should be mini-
mized,

(SC) Student Conflicts for each student, the number of overlapping classes that the
student is attending should be minimized.

A number of additional constraints may be imposed on the problem. These con-
straints will be referred to as distribution constraints. Distribution constraints are
always defined for a set of classes and in some cases take additional parameters.
Furthermore, distribution constraints can be either hard, meaning that the con-
straint should be enforced for a solution to be feasible, or soft in which case a
penalty is defined for the constraint. In the latter case, a solution can be feasible if
the constraint is violated, but the penalty should be minimized.

19

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

All distribution constraints are optional, thus an instance of the ITC problem does
not have to include any distribution constraints, but can also include an unlimited
number of any of the distribution constraints.

The types of distribution constraints are defined in Müller, Rudová, and Müllerová (2018),
but for reference they are included in this thesis. The remaining of this section is a
1:1 of Müller, Rudová, and Müllerová (2018):p. 13–19, with added abbreviations,
unless otherwise stated such as corrections.

(SS) SameStart Given classes must start at the same time slot, regardless of their
days of week or weeks. This means that Ci.start = Cj .start for any two classes Ci

and Cj from the constraint; Ci.start is the assigned start time slot of a class Ci.

(ST) SameTime Given classes must be taught at the same time of day, regardless of
their days of week or weeks. For the classes of the same length, this is the same
constraint as SameStart (classes must start at the same time slot). For the classes
of different lengths, the shorter class can start after the longer class but must end
before or at the same time as the longer class. This means that

(Ci.start ≤ Cj .start ∧ Cj .end ≤ Ci.end) (3.1)
∨ (Cj .start ≤ Ci.start ∧ Ci.end ≤ Cj .end)

for any two classes Ci and Cj from the constraint; Ci.end = Ci.start + Ci.length
is the assigned end time slot of a class Ci.

(DT) DifferentTime Given classes must be taught during different times of day,
regardless of their days of week or weeks. This means that no two classes of this
constraint can overlap at a time of the day. This means that

(Ci.end ≤ Cj .start) ∨ (Cj .end ≤ Ci.start) (3.2)

for any two classes Ci and Cj from the constraint.

(SD) SameDays Given classes must be taught on the same days, regardless of their
start time slots and weeks. In case of classes of different days of the week, a
class with fewer meetings must meet on a subset of the days used by the class
with more meetings. For example, if the class with the most meetings meets
on Monday–Tuesday–Wednesday, all others classes in the constraint can only be
taught on Monday, Wednesday, and/or Friday (correction: “other classes in the
constraint can only be taught on Monday, Tuesday, and/or Wednesday”). This
means that

20

3.1. THE ITC2019 PROBLEM

((Ci.days or Cj .days) = Ci.days) ∨ ((Ci.days or Cj .days) = Cj .days) (3.3)

for any two classes Ci and Cj from the constraint; Ci.days are the assigned days
of the week of a class Ci, doing binary “or” between the bit strings.

(DD) DifferentDays Given classes must be taught on different days of the week,
regardless of their start time slots and weeks. This means that

(Ci.days and Cj .days) = 0 (3.4)

for any two classes Ci and Cj from the constraint; doing binary “and” between the
bit strings representing the assigned days.

(SW) SameWeeks Given classes must be taught in the same weeks, regardless of their
time slots or days of the week. In case of classes of different weeks, a class with
fewer weeks must meet on a subset of the weeks used by the class with more weeks.
This means that

(Ci.weeks or Cj .weeks) = Ci.weeks) ∨ (Ci.weeks or Cj .weeks) = Cj .weeks)
(3.5)

for any two classes Ci and Cj from the constraint; doing binary “or” between the
bit strings representing the assigned weeks.

(DW) DifferentWeeks Given classes must be taught on different weeks, regardless of
their time slots or days of the week. This means that

(Ci.weeks and Cj .weeks) = 0 (3.6)

for any two classes Ci and Cj from the constraint; doing binary “and” between the
bit strings representing the assigned weeks.

(O) Overlap Given classes overlap in time. Two classes overlap in time when they
overlap in time of day, days of the week, as well as weeks. This means that

(Cj .start < Ci.end) ∧ (Ci.start < Cj .end) (3.7)
∧ ((Ci.days and Cj .days) 6= 0) ∧ ((Ci.weeks and Cj .weeks) 6= 0)

for any two classes Ci and Cj from the constraint, doing binary “and” between
days and weeks of Ci and Cj .

21

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

(NO) NotOverlap Given classes do not overlap in time. Two classes do not overlap in
time when they do not overlap in time of day, or in days of the week, or in weeks.
This means that

(Ci.end ≤ Cj .start) ∨ (Cj .end ≤ Ci.start) ∨ (3.8)
((Ci.days and Cj .days) = 0) ∨ ((Ci.weeks and Cj .weeks) = 0)

for any two classes Ci and Cj from the constraint, doing binary “and” between
days and weeks of Ci and Cj .

(SR) SameRoom Given classes should be placed in the same room. This means that
(Ci.room = Cj .room) for any two classes Ci and Cj from the constraint; Ci.room
is the assigned room of Ci.

(DR) DifferentRoom Given classes should be placed in different rooms. This means
that (Ci.room 6= Cj .room) for any two classes Ci and Cj from the constraint.

(SA) SameAttendees Given classes cannot overlap in time, and if they are placed on
overlapping days of week and weeks, they must be placed close enough so that the
attendees can travel between the two classes. This means that

(Ci.end + Ci.room.travel[Cj .room] ≤ Cj .start) ∨ (3.9)
(Cj .end + Cj .room.travel[Ci.room] ≤ Ci.start) ∨

((Ci.days and Cj .days) = 0) ∨ ((Ci.weeks and Cj .weeks) = 0)

for any two classes Ci and Cj from the constraint; Ci.room.travel[Cj .room] is the
travel time between the assigned rooms of Ci and Cj .

(P) Precedence Given classes must be one after the other in the order provided in
the constraint definition. For classes that have multiple meetings in a week or that
are on different weeks, the constraint only cares about the first meeting of the class.
That is,

• the first class starts on an earlier week or

• they start on the same week and the first class starts on an earlier day of the
week or

• they start on the same week and day of the week and the first class is earlier
in the day.

This means that

22

3.1. THE ITC2019 PROBLEM

(first(Ci.weeks) < first(Cj .weeks)) ∨ (3.10)[
(first(Ci.weeks) = first(Cj .weeks)) ∧[

(first(Ci.days) < first(Cj .days)) ∨
((first(Ci.days) = first(Cj .days)) ∧ (Ci.end ≤ Cj .start))]]

for any two classes Ci and Cj from the constraint where i < j and first(x) is the
index of the first non-zero bit in the binary string x.

(WDS) WorkDay(S) There should not be more than S time slots between the start
of the first class and the end of the last class on any given day. This means that
classes that are placed on the overlapping days and weeks that have more than S
time slots between the start of the earlier class and the end of the later class are
violating the constraint. That is

((Ci.days and Cj .days) = 0) ∨ (3.11)
((Ci.weeks and Cj .weeks) = 0) ∨

(max(Ci.end, Cj .end)−min(Ci.start, Cj .start) ≤ S)

for any two classes Ci and Cj from the constraint.

(MGG) MinGap(G) Any two classes that are taught on the same day (they are placed
on overlapping days and weeks) must be at least G slots apart. This means that
there must be at least G slots between the end of the earlier class and the start of
the later class. That is

((Ci.day and Cj .days) = 0) ∨ (3.12)
((Ci.weeks and Cj .weeks) = 0) ∨

(Ci.end + G ≤ Cj .start) ∨
(Cj .end + G ≤ Ci.start)

for any two classes Ci and Cj from the constraint.

(MDD) MaxDays(D) Given classes cannot spread over more than D days of the week,
regardless whether they are in the same week of semester or not. This means that
the total number of days of the week that have at least one class of this distribution
constraint C1, . . . , Cn is not greater than D,

23

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

countNonzeroBits(C1.days or C2.days or · · ·Cn.days) ≤ D (3.13)

where countNonzeroBits(x) returns the number of non-zero bits in the bit string x.
When the constraint is soft, the penalty is multiplied by the number of days that
exceed the given constant D.

(MDLS) MaxDayLoad(S) Given classes must be spread over the days of the week
(and weeks) in a way that there is no more than a given number of S time slots
on every day. This means that for each week w ∈ {0, 1, . . . ,nrWeeks− 1} of the
semester and each day of the week d ∈ {0, 1, . . . ,nrDays− 1}, the total number of
slots assigned to classes C that overlap with the selected day d and week w is not
more than S,

DayLoad(d, w) ≤ S (3.14)
DayLoad(d, w) =∑

i

{
Ci.length | (Ci.days and 2d) 6= 0 ∧ (Ci.weeks and 2w) 6= 0)

}

where 2d is a bit string with the only non-zero bit on position d and 2w is a bit
string with the only non-zero bit on position w. When the constraint is soft (it is
not required and there is a penalty), its penalty is multiplied by the number of
slots that exceed the given constant S over all days of the semester and divided
by the number of weeks of the semester (using integer division). Importantly the
integer division is computed at the very end. That is

penalty×∑
w,d

max(DayLoad(d, w)− S, 0)

 /nrWeeks (3.15)

(MBRR,S) MaxBreaks(R,S) This constraint limits the number of breaks during a
day between a given set of classes (not more than R breaks during a day). For
each day of week and week, there is a break between classes if there is more than
S empty time slots in between.

Two consecutive classes are considered to be in the same block if the gap be-
tween them is not more than S time slots. This means that for each week w ∈
0, 1, . . . ,nrWeeks− 1 of the semester and each day of the week d ∈ 0, 1, . . . ,nrDays− 1,
the number of blocks is not greater than R + 1,

24

3.1. THE ITC2019 PROBLEM

|MergeBlocks{(C.start, C.end) | (3.16)
(C.days and 2d) 6= 0 ∧ (C.weeks and 2w) 6= 0
})| ≤ R + 1

where 2d is a bit string with the only non-zero bit on position d and 2w is a bit
string with the only non-zero bit on position w.

The MergeBlocks function recursively merges to the block B any two blocks Ba

and Bb that are identified by their start and end slots that overlap or are not more
than S slots apart, until there are no more blocks that could be merged.

(Ba.end + S ≥ Bb.start) ∧ (Bb.end + S ≥ Ba.start) =⇒ (3.17)
(B.start = min(Ba.start, Bb.start)) ∧ (B.end = max(Ba.end, Bb.end))

When the constraint is soft, the penalty is multiplied by the total number of
additional breaks computed over each day of the week and week of the semester
and divided by the number of weeks of the semester at the end (using integer
division, just like for the MaxDayLoad constraint).

(MBLM,S) MaxBlock(M,S) This constraint limits the length of a block of two or
more consecutive classes during a day (not more than M slots in a block). For
each day of week and week, two consecutive classes are considered to be in the
same block if the gap between them is not more than S time slots. For each block,
the number of time slots from the start of the first class in a block till the end of
the last class in a block must not be more than M time slots. This means that for
each week w ∈ {0, 1, . . . ,nrWeeks− 1} of the semester and each day of the week
d ∈ {0, 1, . . . ,nrDays− 1}, the maximal length of a block does not exceed M slots

max({B.end−B.start | B ∈ MergeBlocks({C.start, C.end) (3.18)
|(C.days and 2d) 6= 0 ∧ (C.weeks and 2w) 6= 0})
}) ≤M

When the constraint is soft, the penalty is multiplied by the total number of blocks
that are over the M time slots, computed over each day of the week and week of
the semester and divided by the number of weeks of the semester at the end (using
integer division, just like for the MaxDayLoad constraint).

— Müller, Rudová, and Müllerová (2018)

In this chapter, the following notation will be used:

25

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

• set of classes C,

• set of students B,

• set of rooms R,

• chosen schedule for class c is denoted Sc,

• chosen room for class c is denoted Rc,

• set of feasible schedules for class c is denoted Sc and

• set of feasible rooms for class c is denoted Rc.

3.2 Processing of Instances
Both implementations made for modeling of the ITC2019 problem utilize a shared
dependency used mainly for parsing of ITC2019 instances and defining data struc-
tures used by the implementations. Since the implementation for use by the
MiniZinc model was implemented at a different time than the implementation
for the FlatZinc model, some features are only used by the latter and vice versa.
This section will describe the most important features of the parser, and point out
features which is only used by one of the implementations.

Besides from reading and parsing an ITC2019 instance file, this module also sections
the students of the problem into classes. This is done prior to modeling of the
problem, to avoid making the model too complex, and is possible because the
students only impose a single soft constraint on the model, namely the minimization
of conflicting classes of a student.

3.2.1 Sectioning of Students
As described in Section 3.1 a course consist of one or more configurations, each
with one or more subparts with one or more classes. This course structure can be
defined as a tree structure with the course at the root node, and the classes as leaf
nodes.

Students have to be sectioned into exactly one class of each subpart of a single
configuration of each course that the student is signed up for. A possible sectioning
of a student who has to attend C1 from Figure 3.1 can be seen in figure 3.2, where
the chosen paths for the student is marked with a bold red line. In this example,
the student is sectioned into classes C4 and C6.

By defining the course structure as a tree, it is possible to section students using
a depth-first tree traversal algorithm. However, before traversal of the tree, the

26

3.2. PROCESSING OF INSTANCES

Courses

Configurations

Subparts

Classes

C1

F1

P1

C1 C2

F2

P2

C3 C4

P3

C5 C6

Figure 3.2: Example of student sectioning for course C1, into classes C4 and C6.

structure is altered slightly, to take parent classes into account.

Assuming that C3 is the parent class of C5, and C4 is the parent class of C6, C5
and C6 will be added as the child of C3 and C4 respectively. The old nodes will be
pruned, and the new course structure will be as pictured in figure 3.3.

Every student who is signed up for C1 will now be sectioned into classes by
performing tree traversal on the tree of figure 3.3. The algorithm will iterate
through every configuration and every subpart of the course, and then perform a
recursive traversal of the classes of each subpart. When a leaf node is found, the
path from the subpart-node to the leaf node, will be returned as the classes of the
student, given that there was available spots for all of the classes. In this case,
the iteration over the configurations will also stop, since a student should only be
sectioned into classes of a single configuration of a course. The implementation of
the algorithm can be seen in Listing 3.1, which shows the iteration over students,
courses, configurations and subparts, and Listing 3.2 which show the recursive
traversal through classes.

1 def get_students(self, child):
2 for student in child:
3 student_id = "S" + student.attrib['id']
4 stud = {}
5 stud['classes'] = []
6 chosen_classes = []
7

8 # Needed courses
9 for course in student:

10 course_id = "C" + course.attrib['id']

27

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

Courses

Configurations

Subparts

Classes

C1

F1

P1

C1 C2

F2

P2

C3

C5

C4

C6

Figure 3.3: Altered course tree which takes parent classes into account.

11 crs = self.courses[course_id] if course_id in self.courses else
None↪→

12

13 for conf in self.course_tree[course_id]:
14 for subp in self.course_tree[course_id][conf]:
15 if len(self.course_tree[course_id][conf][subp]) > 0:
16 chosen_classes = self.choose_student_classes(
17 self.course_tree[course_id][conf][subp],
18 chosen_classes
19)
20

21 if len(chosen_classes) > 0:
22 stud['classes'] = chosen_classes
23 break
24

25 self.students[student_id] = stud

Listing 3.1: Implementation of class assignments for each student by traversal of
courses, configurations and subparts.

1 def choose_student_classes(self, subpart, chosen = []):
2 for clas in subpart:
3 if self.classes[int(clas)].attending < self.classes[int(clas)].limit:
4 chosen.append(int(clas))
5 self.classes[int(clas)].attending += 1
6 if len(subpart[clas]) > 0:
7 chosen = self.choose_student_classes(subpart[clas], chosen)

28

3.2. PROCESSING OF INSTANCES

8 break
9 return chosen

Listing 3.2: Choose classes for a subpart

3.2.2 Schedules and Classes
Schedules is used to indicate when a class take place, an is defined by a set of
weeks, a set of days, a start time and a duration (or length).

As mentioned in the description of the ITC2019 Problem, a single schedule and
a single room should be chosen for each class, from a set of rooms and schedules
available for that class. An example of a class and its available rooms and schedules
in the ITC2019 instance format can be seen in Listing 3.3.

1 <class id="40" limit="34" parent="39">
2 <room id="16" penalty="4"/>
3 <room id="21" penalty="0"/>
4 <room id="22" penalty="4"/>
5 <room id="3" penalty="0"/>
6 <room id="13" penalty="0"/>
7 <room id="25" penalty="4"/>
8 <room id="27" penalty="0"/>
9 <room id="7" penalty="0"/>

10 <room id="17" penalty="0"/>
11 <time days="0001000" start="96" length="22" weeks="011111111111110" penalty="0"/>
12 <time days="0000100" start="96" length="22" weeks="011110111111110" penalty="0"/>
13 <time days="0001000" start="120" length="22" weeks="011111111111110" penalty="6"/>
14 <time days="0000100" start="120" length="22" weeks="011110111111110" penalty="0"/>
15 <time days="0001000" start="144" length="22" weeks="011111111111110" penalty="6"/>
16 <time days="0000100" start="144" length="22" weeks="011110111111110" penalty="0"/>
17 <time days="0001000" start="168" length="22" weeks="011111111111110" penalty="6"/>
18 <time days="0000100" start="168" length="22" weeks="011110111111110" penalty="2"/>
19 <time days="0001000" start="192" length="22" weeks="011111111111110" penalty="0"/>
20 <time days="0000100" start="192" length="22" weeks="011110111111110" penalty="8"/>
21 <time days="0001000" start="216" length="22" weeks="011111111111110" penalty="2"/>
22 <time days="0000100" start="216" length="22" weeks="011110111111110" penalty="8"/>
23 </class>

Listing 3.3: Example of class in the ITC2019 Instance format, with feasible
schedules.

The format declares the starting time and length of the schedule as the number of
5-minute slots, and the days and weeks in a binary representation where a 1 specifies
an occurance of the class during the that day or week. The penalty attribute defines
how much the objective function should be penalized if the schedule is chosen for
the class. As an example, if the following schedule was chosen for a class,

<time days="0001000" start="96" length="22" weeks="011111111111110" penalty="0"/>

the class would be scheduled at 8:00am to 9:50am on Thursdays on weeks 2, 3, . . . , 14
and the objective function would be penalized by 0.

29

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

Upon parsing of ITC2019 instance, data related to classes, schedules and rooms is
stored in multiple data structures. These differ between the implementations of
the MiniZinc model and the FlatZinc model generator.

In the FlatZinc model, a few objects was defined to ease the development of
constraints for the ITC2019 problem. This was a lesson learned from the imple-
mentation of the MiniZinc model, where data is stored in Python dictionaries. The
definition of the Schedule object used for storing data about a schedule is seen in
Listing 3.4.

1 class Schedule:
2 def __init__(self, sid, weeks, days, start, length):
3 self.id = sid
4 self.name = "T" + str(sid)
5 self.weeks = weeks
6 self.days = days
7 self.start = start
8 self.length = length
9 self.end = self.start + self.length

10

11 def key(self):
12 return self.weeks.to01() + "_" + self.days.to01() + "_" +

str(self.start) + "_" + str(self.length)↪→

13

14 def overlap_with(self, s):
15 # Time overlap
16 if (self.end > s.start and self.start <= s.start) \
17 or (s.end > self.start and s.start <= self.start) \
18 or (s.start <= self.start and s.end > self.end) \
19 or (self.start <= s.start and self.end > s.end):
20

21 # Day overlap
22 if (self.days & s.days).any():
23

24 # Week overlap
25 if (self.weeks & s.weeks).any():
26 return True
27

28 return False
29

30 def first_week(self):
31 i = 1
32 for w in self.weeks:
33 if w:
34 return i
35 i += 1
36

37 def first_day(self):

30

3.2. PROCESSING OF INSTANCES

38 i = 1
39 for d in self.days:
40 if d:
41 return i
42 i += 1

Listing 3.4: The Schedule class

Furtermore, a class object named Clas (to avoid conflicts with Python’s built-in
keyword class) was made to hold information about a class. The Clas object holds
a set of feasible schedules, a set of feasible rooms, sets of penalties, number of
attending students and limit, etc. Furthermore, methods is provided for checking
if a class is fixed or not. A fixed class is defined as a class with only one feasble
schedule, and 1 or less feasible rooms. The complete definition of the Clas object
can be seen in Listing 3.5

1 class Clas:
2 def __init__(self, cid):
3 self.cid = cid
4 self.schedule_var = "C" + str(cid) + "_Schedule"
5 self.room_var = "C" + str(cid) + "_Room"
6 self.schedules = set()
7 self.rooms = set()
8 self.schedule_penalty = {}
9 self.room_penalty = {}

10 self.attending = 0
11 self.limit = 0
12

13 def add_schedule(self, schedule):
14 self.schedules.add(schedule)
15

16 def add_room(self, room):
17 self.rooms.add(room)
18

19 def add_room_penalty(self, room, penalty):
20 self.room_penalty[room] = penalty
21

22 def is_fixed(self):
23 if len(self.rooms) <= 1 and len(self.schedules) <= 1:
24 return True
25 return False
26

27 def has_fixed_room(self):
28 if len(self.rooms) <= 1:
29 return True
30 return False
31

32 def has_fixed_schedule(self):

31

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

33 if len(self.rooms) <= 1:
34 return True
35 return False

Listing 3.5: The Clas class

Another improvement was made during the implementation of the FlatZinc model
generator when it was discovered that instances of the ITC2019 competition,
contained a high number of identical schedules. This means that the number of
schedules in an instance was reduced to an average of 4-5% of the original number
of schedules when using FlatZinc generation, as opposed to data generation for the
MiniZinc model. The exact number of total and unique schedules for each instance
can be seen in Table 3.1.

Instance Total Schedules Unique Schedules Unique Schedules %
wbg-fal10 4.617 154 3.3
lums-sum17 340 93 27.4
bet-sum18 210 50 23.8
pu-cs-fal07 2.958 182 6.2
pu-c8-spr07 30.538 896 2.9
agh-fis-spr17 145.868 9.655 6.6
agh-ggis-spr17 46.671 2.836 6.1
bet-fal17 23.366 595 2.5
iku-fal17 93.386 588 0.6
pu-llr-spr07 8.654 508 5.9
mary-spr17 12.331 620 5.0
muni-fi-spr16 9.556 789 8.3
muni-pdf-spr16c 150.575 2.696 1.8
pu-llr-spr17 9.290 993 10.7
muni-fsps-spr17 11.355 1.953 17.2
tg-fal17 18.384 1.645 8.9
Total 568.099 24.253 4.3

Table 3.1: Number of total schedules, number of unique schedules and the percentage
of unique schedules for each ITC2019 Instance.

The unique schedules are found by defining an id for every schedule, composed of
the binary strings of the weeks and days of the schedule, and the start time and
length. Only unique ids will be added, thus schedule with the same days, weeks,
start and length will only be saved once.

32

3.3. THE MINIZINC MODEL

3.3 The MiniZinc Model
In this section the data creation for the MiniZinc model will be described, as well
as the model for the ITC2019 problem. It is important to note that for this section,
schedules can be identical and each schedule belongs to exactly one class.

The full MiniZinc model described in this section can be found in the (Project
Repository n.d.) file itc2019/mzn/base.mzn.

3.3.1 Data Creation
For the MiniZinc implementation, after parsing of an instance file for ITC2019
the data is written to a Dzn file for use with a MiniZinc model. However, while
the parsed data corresponds to the data from the instance, the data is first
transformed into something more easily handled by a constraint programming
solver. Furthermore it is possible to prune certain data to reduce the size of the
input. Since the details of how the data is created is quite trivial, a case study will
instead give an example of how data is generated for a single constraint, and give
the full list of declarations in terms of MiniZinc to give an overview of what data
is available to the model.

Case Study: Pruning Data during Data Creation for a Constraint

While the distribution constraints are defined for only a subset of the classes, some
constraints need data for all possible combinations of classes. One example is the
data needed for the SO constraint which enforce that

Two classes assigned to the same room, cannot have overlapping schedules.

Thus, the solver needs to know every overlapping schedule for each pair of classes.
This data could be represented by an array of pairs, which correspond to every
2-combination of schedules which is overlapping for every pair of classes. This will
be of size

(
n
2

)
, in the worst case. A way to reduce the size of the data file, is as

follows.

Consider ∆ to be an array of sets indexed by schedules si, with every set defined as
the set of schedules {s1, s2, . . . , sn} that overlap with schedule si. By this definition
∆ can be defined as

∆si
=
{
sj | sj ∈ S, si and sj are overlapping

}
∀si ∈ S

where si and sj belongs to different classes.

33

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

However, this can be improved. While si and sj have to belong to different classes
because a class cannot overlap with itself, two classes with disjoint sets of feasible
rooms will never be able to overlap either. Thus, while creating the data, it is
possible to prune (or exclude) any sj from ∆si

if

Rsi
∩Rsj

= ∅.

Ultimately, given a schedule si, ∆si
is the set of schedules that overlap with si

where it is possible for any of the schedules to be scheduled into the same room as
si and none of the schedules belong to the same class as si.

Declarations

The following declarations correspond to data parsed from an ITC2019 instance
file, and output to a Dzn file. Thus, these declarations are a part of the model, and
defines what data is available to the model.

The Classes, Schedules and Rooms contains all the classes, schedules and rooms
of the instance, respectively.

ScheduleStarts and ScheduleLengths are arrays containing the start time and
length (or duration) of each schedule, respectively.

ClassSchedules and ClassRooms are arrays of sets, indexed by Classes, such
that each class has a set of feasible Schedules in ClassSchedules, and a set of
feasible Rooms in ClassRooms.

The ClassRoomPenalties and ClassSchedulePenalties are 2-dimensional arrays,
containing the penalty of each combination of class and room, and class and schedule
respectively. As an example, if a penalty of 4 is defined if room R1 is chosen for
class C1 then ClassRoomPenalties[C1, R1] = 4.

1 enum Classes;
2 enum Schedules;
3 enum Rooms;
4 enum Weeks;
5 enum Days;
6

7 array[Schedules] of int: ScheduleStarts;
8 array[Schedules] of int: ScheduleLengths;
9 array[Schedules] of set of Weeks: ScheduleWeeks;

10 array[Schedules] of set of Days: ScheduleDays;
11 array[Classes] of set of Schedules: ClassSchedules;
12 array[Classes] of set of Rooms: ClassRooms;
13 array[Classes,Rooms] of int: ClassRoomPenalties;
14 array[Classes,Schedules] of int: ClassSchedulePenalties;

34

3.3. THE MINIZINC MODEL

The most central part of the model is the two arrays of decision variables ScheduledTime
and ScheduledRoom. These denote the chosen schedule and chosen room for each
class respectively.

1 array[Classes] of var Schedules: ScheduledTime;
2 array[Classes] of var Rooms: ScheduledRoom;

Both arrays are indexed by the classes of the instance. This tells the solver that
for the set of classes C, set of schedules S and set of rooms R, class c is scheduled
into room Rc with schedule Sc:

Sc ∈ S ∀c ∈ C and Rc ∈ R ∀c ∈ C.

A number of arrays are used for the distribution constraints. These arrays are
all declared in a common way, namely as one-dimensional arrays of sets, indexed
by Schedules and where each set contains a number of Schedules. As an ex-
ample, ScheduleOverlaps[si] is the set of schedules where each schedule sj ∈
ScheduleOverlaps[si] is overlapping with si.

1 array[Schedules] of set of Schedules: ScheduleOverlaps;
2 array[Schedules] of set of Schedules: Precedences;
3 array[Schedules] of set of Schedules: SameStarts;
4 array[Schedules] of set of Schedules: SameDays;
5 array[Schedules] of set of Schedules: SameTime;
6 array[Schedules] of set of Schedules: SameWeeks;

As described in Section 3.1 distribution constraints defined for an instance can be
either hard or soft. If the distribution constraint is hard, the constraint has to be
enforced for a solution to be feasible, while if the distribution constraint is soft, the
solver do not have to enforce the constraint, but should minimize a given penalty.
This is modelled as follows.

Each type of distribution constraint defined in the instance-file is split into soft
constraints and hard constraints, and then parsed to MiniZinc in the following
form:

1 array[int] of set of Classes: OverlapHard;
2 array[int] of set of Classes: OverlapSoft;
3 array[int] of int: OverlapPenalties;
4

5 array[int] of set of Classes: NotOverlapHard;
6 array[int] of set of Classes: NotOverlapSoft;

35

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

7 array[int] of int: NotOverlapPenalties;
8

9 array[int] of set of Classes: PrecedenceHard;
10 array[int] of set of Classes: PrecedenceSoft;
11 array[int] of int: PrecedencePenalties;
12

13 array[int] of set of Classes: SameAttendeesHard;
14 array[int] of set of Classes: SameAttendeesSoft;
15 array[int] of int: SameAttendeesPenalties;
16

17 array[int] of set of Classes: SameStartHard;
18 array[int] of set of Classes: SameStartSoft;
19 array[int] of int: SameStartPenalties;
20

21 array[int] of set of Classes: SameTimeHard;
22 array[int] of set of Classes: SameTimeSoft;
23 array[int] of int: SameTimePenalties;
24

25 array[int] of set of Classes: DiffTimeHard;
26 array[int] of set of Classes: DiffTimeSoft;
27 array[int] of int: DiffTimePenalties;
28

29 array[int] of set of Classes: SameDaysHard;
30 array[int] of set of Classes: SameDaysSoft;
31 array[int] of int: SameDaysPenalties;
32

33 array[int] of set of Classes: DiffDaysHard;
34 array[int] of set of Classes: DiffDaysSoft;
35 array[int] of int: DiffDaysPenalties;
36

37 array[int] of set of Classes: SameWeeksHard;
38 array[int] of set of Classes: SameWeeksSoft;
39 array[int] of int: SameWeeksPenalties;
40

41 array[int] of set of Classes: DiffWeeksHard;
42 array[int] of set of Classes: DiffWeeksSoft;
43 array[int] of int: DiffWeeksPenalties;
44

45 array[int] of set of Classes: SameRoomHard;
46 array[int] of set of Classes: SameRoomSoft;
47 array[int] of int: SameRoomPenalties;
48

49 array[int] of set of Classes: DiffRoomHard;
50 array[int] of set of Classes: DiffRoomSoft;
51 array[int] of int: DiffRoomPenalties;

Thus, three arrays is defined for each type of distribution constraint DistType.

• DistType Hard constains the sets of classes where the condition of the distri-

36

3.3. THE MINIZINC MODEL

bution constraint DistType have to be true for any solution to be feasible.

• DistType Soft constains the sets of classes where the condition of the distri-
bution constraint is penalized if the condition of the distribution constraint
is not fulfilled.

• DistType Penalties constains a penalty for each set of classes in the Dist-
TypeSoft array.

The maximum possible violation of each variable is calculated when creating the
data file, and is included to define the upper-bounds of the variables.

1 int: maxSameStartViol;
2 int: maxSameTimeViol;
3 int: maxDiffTimeViol;
4 int: maxSameDaysViol;
5 int: maxDiffDaysViol;
6 int: maxSameWeeksViol;
7 int: maxDiffWeeksViol;
8 int: maxSameRoomViol;
9 int: maxDiffRoomViol;

10 int: maxOverlapViol;
11 int: maxNotOverlapViol;
12 int: maxSameAttendeesViol;
13 int: maxPrecedenceViol;
14 int: maxWorkDayViol;
15 int: maxMinGapViol;
16 int: maxMaxDaysViol;
17 int: maxMaxDayLoadViol;
18 int: maxMaxBreaksViol;
19 int: maxMaxBlockViol;

Thus, the following variable declarations are used for the soft distribution con-
straints, and uses the previously declared upper-bounds for each element of the
corresponding array.

1 array[1..length(SameRoomSoft)] of var 0..maxSameRoomViol: SameRoomViol;
2 array[1..length(DiffRoomSoft)] of var 0..maxDiffRoomViol: DiffRoomViol;
3 array[1..length(SameAttendeesSoft)] of var 0..maxSameAttendeesViol:

SameAttendeesViol;↪→

4 array[1..length(NotOverlapSoft)] of var 0..maxNotOverlapViol: NotOverlapViol;
5 array[1..length(OverlapSoft)] of var 0..maxOverlapViol: OverlapViol;
6 array[1..length(SameTimeSoft)] of var 0..maxSameTimeViol: SameTimeViol;
7 array[1..length(DiffTimeSoft)] of var 0..maxDiffTimeViol: DiffTimeViol;
8 array[1..length(SameWeeksSoft)] of var 0..maxSameWeeksViol: SameWeeksViol;
9 array[1..length(DiffWeeksSoft)] of var 0..maxDiffWeeksViol: DiffWeeksViol;

10 array[1..length(SameDaysSoft)] of var 0..maxSameDaysViol: SameDaysViol;

37

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

11 array[1..length(DiffDaysSoft)] of var 0..maxDiffDaysViol: DiffDaysViol;
12 array[1..length(SameStartSoft)] of var 0..maxSameStartViol: SameStartViol;
13 array[1..length(PrecedenceSoft)] of var 0..maxPrecedenceViol: PrecedenceViol;

This minimizes the size of the domains, and in case a distribution constraint
is not used, the size of the domain will be 0, which allows MiniZinc to prune
the corresponding array and any constraints dependent on that array during
transformation to FlatZinc (or flattening).

3.3.2 The Model
As mentioned, the solve stage is handled by MiniZinc which is run on data from the
data creation stage using a MiniZinc model. This section will cover the description
of the MiniZinc model for the ITC2019 Problem.

Predicates and Constraints

As mentioned in Chapter 1, MiniZinc provides a feature named predicates. Pred-
icates are functions with a boolean return type. The model makes use of these
predicates to simplify common constraints, and makes it easy to adjust how a
constraint is defined without considering the rest of the model. These predicates
and their uses will be defined here.

The constraint CS enforces that for every class c, the chosen schedule Sc must be
a member of the set of feasible schedules Sc for class c. This constraint does not
make use of any predicates, and is defined as:

Sc ∈ Sc ∀c ∈ C

In MiniZinc terms that is

1 constraint forall(c in Classes)(
2 ScheduledTime[c] in ClassSchedules[c]
3);

The constraint CR enforces that for every class c, the chosen room Rc must be a
member fo the set of feasible rooms Rc for class c.

That is

Rc ∈ Rc ∀c ∈ C

38

3.3. THE MINIZINC MODEL

and in MiniZinc terms

1 constraint forall(c in Classes)(
2 ScheduledRoom[c] in ClassRooms[c]
3);

The constraint SO enforces that for every pair of classes ci, cj where Rci
= Rcj

,
meaning that ci and cj are scheduled into the same room, ci and cj may not overlap.
For this, the predicate overlap is defined. The predicate takes two classes, and
check if their chosen schedules overlap by using the ScheduleOverlaps array. If
Osi

is defined as the set of schedules that overlap with schedule si, and Sc is the
chosen schedule for class c then the overlap predicate can be defined as:

overlap(ci, cj) : Scj
∈ OSci

which in MiniZinc is:

1 predicate overlap(Classes: c1, Classes: c2) =
2 ScheduledTime[c2] in ScheduleOverlaps[ScheduledTime[c1]]
3 ;

For the constraint Rci
6= None is added to this constraint to exclude this constraint

for classes which does not need a room, in which case ci and cj is allowed to overlap.
The MiniZinc constraint loops through every pair of classes ci, cj ∈ C, and if they
are scheduled into the same room, and the room is not None the constraint states
that the two classes should not overlap.

1 constraint forall(c1,c2 in Classes where c1<c2 /\ ScheduledRoom[c1] ==
ScheduledRoom[c2] /\ ScheduledRoom[c1] != None)(↪→

2 not(overlap(c1,c2))
3);

A minor but critical addition to the constraint is that of c1<c2. This adds
symmetry breaking to the constraint, such that two classes are only constrained once.
Considering a pair of classes ci, cj which are both scheduled into the same room,
without limiting the constraint to ci < cj two constraints would be added:

¬overlap(ci, cj)
¬overlap(cj, ci)

39

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

However, these constraints are identical. By adding the condition ci < cj , only one
of the above constraints will enforced.

The constraint RU enforces that for any class c, Rc may not be in the set of occupied
rooms for Sc. The set of occupied rooms for a schedule Si is the set of rooms where
the times where the room is occupied or unavailable, overlap with the schedule
Si.

1 constraint forall(c in Classes)(
2 not(ScheduledRoom[c] in RoomUnavailable[ScheduledTime[c]])
3);

The distribution constraint SR defines that for a set of classes, each pair of classes
must be scheduled into the same room. The same_room predicate operates on a
pair of classes, ci, cj ∈ C, and is defined as follows:

same_room(ci, cj) : Rci
= Rc2

and in MiniZinc terms:

1 predicate same_room(Classes: c1, Classes: c2) =
2 ScheduledRoom[c1] == ScheduledRoom[c2]
3 ;

To enforce this constraint on each set of classes in SameRoomHard, that is, the sets
of classes where this has to be enforced for a solution to be feasible, the following
constraint is defined:

1 constraint forall(sameRoom in SameRoomHard, c1,c2 in sameRoom where c1<c2)(
2 same_room(c1,c2)
3);

Since a predicate was defined for determining if two classes are scheduled into
the same room, using the same predicate, the opposite distribution constraint
DifferentRoom can be defined as well:

1 constraint forall(diffRoom in DiffRoomHard, c1,c2 in diffRoom where c1<c2)(
2 not(same_room(c1,c2))
3);

The soft variant of the SameRoom constraint is defined a bit differently. In this
case, the SameRoom constraint should only penalize the solution according the the

40

3.3. THE MINIZINC MODEL

penalties defined in the SameRoomPenalties array. Thus, the previously defined
SameRoomViol array is used for the violations, such that each element is the number
of violation of the set of one soft definition of the SameRoom constraint.

1 constraint forall(s in 1..length(SameRoomSoft))(
2 SameRoomViol[s] == sum(c1,c2 in SameRoomSoft[s] where c1<c2 /\

not(same_room(c1,c2)))(1)↪→

3);

That is, for every set of classes C in SameRoomSoft, the element of SameRoomViol
is equal to the sum of violations where a violation is 1 for every pair of classes
ci, cj ∈ C, where ci and cj is not in the same room.

Since the predicates and constraints for the distribution constraints P, O, NO,
SD, DD, SW, DW, ST, DT and SS are defined in a similar manner, these will not
be described in detail, but can be found in the (Project Repository n.d.) in file
itc2019/mzn/base.mzn.

One distribution constraint predicate is defined differently, namely the SameAttendees
(SA) constraint. Since this constraint is dependent of both details of the chosen
schedule, and the chosen room and distances between rooms, it is necessary to
model it more closely to the official definition of the constraint.

The SA constraint states that for a pair of classes ci, cj , where ci and cj are scheduled
to the same days and weeks, there should be enough time to reach the room Rci

from the room Rcj
or vice versa. The travel-time (or distance) is given in the

2-dimensional array RoomDistances.

In mathematical terms, for a pair of classes ci, cj ∈ C, if δ(ri, rj) denotes the
distance d between two rooms ri, rj ∈ R, i.e. δ : Ri, Rj → d, then the constraint
can be defined as follows:

¬same_weeks(ci, cj) ∨ ¬same_days(ci, cj)∨
(Sstartci

+ Sdurationci
+ δ(Rci

,Rcj
) ≤ Sstartcj

)∨
(Sstartcj

+ Sdurationcj
+ δ(Rcj

,Rci
) ≤ Sstartci

)

The corresponding predicate is defined in MiniZinc as:

1 predicate same_attendees(Classes: c1, Classes: c2) =
2 not(same_weeks(c1,c2)) \/ not(same_days(c1,c2)) \/

41

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

3 ((ScheduleStarts[ScheduledTime[c1]] +
ScheduleLengths[ScheduledTime[c1]] +
RoomDistances[ScheduledRoom[c1],ScheduledRoom[c2]]) <=
ScheduleStarts[ScheduledTime[c2]]) \/

↪→

↪→

↪→

4 ((ScheduleStarts[ScheduledTime[c2]] +
ScheduleLengths[ScheduledTime[c2]] +
RoomDistances[ScheduledRoom[c2],ScheduledRoom[c1]]) <=
ScheduleStarts[ScheduledTime[c1]])

↪→

↪→

↪→

5 ;

Objective Function

The objective of the solver is to minimize the objective function which consist
of

• Penalties for the chosen room of each class

• Penalties for the chosen schedule of each class

• Penalties for each soft distribution constraint

The objective function, along with the objective, is stated as

1 solve :: int_search(ScheduledTime, smallest, indomain_min, complete)
2 minimize sum(c in Classes)(ClassRoomPenalties[c,ScheduledRoom[c]])
3 + sum(c in Classes)(ClassSchedulePenalties[c,ScheduledTime[c]])
4 + sum(s in

1..length(SameStartSoft))(SameStartViol[s]*SameStartPenalties[s])↪→

5 + sum(s in
1..length(SameTimeSoft))(SameTimeViol[s]*SameTimePenalties[s])↪→

6 + sum(s in
1..length(DiffTimeSoft))(DiffTimeViol[s]*DiffTimePenalties[s])↪→

7 + sum(s in
1..length(SameDaysSoft))(SameDaysViol[s]*SameDaysPenalties[s])↪→

8 + sum(s in
1..length(DiffDaysSoft))(DiffDaysViol[s]*DiffDaysPenalties[s])↪→

9 + sum(s in
1..length(SameWeeksSoft))(SameWeeksViol[s]*SameWeeksPenalties[s])↪→

10 + sum(s in
1..length(DiffWeeksSoft))(DiffWeeksViol[s]*DiffWeeksPenalties[s])↪→

11 + sum(s in
1..length(SameRoomSoft))(SameRoomViol[s]*SameRoomPenalties[s])↪→

12 + sum(s in
1..length(DiffRoomSoft))(DiffRoomViol[s]*DiffRoomPenalties[s])↪→

13 + sum(s in 1..length(OverlapSoft))(OverlapViol[s]*OverlapPenalties[s])
14 + sum(s in

1..length(NotOverlapSoft))(NotOverlapViol[s]*NotOverlapPenalties[s])↪→

15 + sum(s in
1..length(SameAttendeesSoft))(SameAttendeesViol[s]*SameAttendeesPenalties[s])↪→

42

3.3. THE MINIZINC MODEL

16 + sum(s in
1..length(PrecedenceSoft))(PrecedenceViol[s]*PrecedencePenalties[s])↪→

Mathematically it can be described as follows. Let Dt be the set of distribution
types, Pd, the array of penalties for distribution type d and Vd the array of the
number of violations of the constraints for distribution type d, then the objective
function can be defined as

∑
c∈C

PRc +
∑
c∈C

PSc +
∑
i∈d

vi · pi | d ∈ Dt, p ∈ Pd, v ∈ Vd

 .
Some constraints were not implemented as it was not discovered how these con-
straints could be modeled in MiniZinc, within the time limit of this thesis. These
are the MD, MBR and MBL constraints.

43

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

3.4 The FlatZinc Model
Although a MiniZinc model was implemented, FlatZinc gives more flexibility with
the drawback of being more complicated to work with. Since it was not possible to
create a model that was flexible enough for the purpose of ITC2019 in MiniZinc, it
was decided that a model in FlatZinc should be made. This would provide more
flexibility in the sense that a model could be created directly from the instance file
without relying on data files for a unified MiniZinc model.

This section will present a program for converting instance files of ITC2019 into
FlatZinc models, namely itc2fzn. itc2fzn is written in the programming language
Python, and takes an input file, i.e. an instance file in the ITC2019 XML format,
and a destination to an output file. itc2fzn will start by extracting all data from
the input file, then generate a FlatZinc model (and store this in memory), and
finally write the model to the output destination file.

In this section, a Python module fzn, along with the program itc2fzn will be
presented along with source code samples and mathematical formulation of the
FlatZinc model.

Note that in this section, every schedule S ∈ S is unique and that each schedule
can be a feasible schedule for one or more classes. A description of why this is can
be found in Section 3.2.2.

3.4.1 The fzn Module
A Python package (or library) named fzn was written as a part of itc2fzn. This
module implements objects which represent FlatZinc variables and constraints and
provides capabilities to construct a complete FlatZinc model in Python and write
it into a FlatZinc file.

Boolean and integer variables, along with arrays of integers and arrays of boolean
values are supported, and a subset of the constraints defined in the FlatZinc
definition. The base class defines 4 internal structures:

introduced_vars A set of names of variables introduced to the model,

defined_vars a set of names of variables defined by constraints,

variables a list of variable objects,

constraints a list of constraint objects.

The two sets, introduced_vars and defined_vars are used only to check if a
variable is already introduced or defined respectively. The set data structure

44

3.4. THE FLATZINC MODEL

in Python provides fast search capabilities and does not allow multiple identical
elements.

The lists variables and constraints contain the variable and constraint objects
when introduced to the model. These are used for writing to the FlatZinc file, and
to store additional information about each variable and constraint.

For every variable object and constraint object a write method is implemented,
used for writing to a FlatZinc file, and the object stores information for use in this
case. The implementation of the integer variable object IntVar can be seen in
Listing 3.6, and the implementation of the element constraint of the type r ↔ x ∈ S
(SetInReif) is defined in Listing 3.7

Listing 3.6: Implementation of the integer variables (IntVar) object

1 class IntVar:
2 def __init__(self, name, domain=None, output = False):
3 self.name = name
4 self.domain = domain
5 self.output = output
6

7 def write(self, f):
8 if self.output:
9 f.write("var {}: {} :: var_is_introduced :: output_var ::

is_defined_var;\n".format(self.domain, self.name))↪→

10 else:
11 f.write("var {}: {} :: var_is_introduced ::

is_defined_var;\n".format(self.domain, self.name))↪→

Listing 3.7: Implementation of the element constraint (SetInReif) object

1 class SetInReif:
2 def __init__(self, x, s, r, defines = None):
3 self.x = x
4 self.s = s
5 self.r = r
6 self.defines = defines
7

8 if len(s) < 1:
9 if type(s) == list:

10 s.append(0)
11 elif type(s) == set:
12 s.add(0)
13

14 def write(self, f):
15 if self.defines is not None:
16 f.write("constraint set_in_reif({}, {{{}}}, {}) ::

defines_var({});\n".format(self.x, ','.join([str(e) for e in
self.s]), self.r, self.defines))

↪→

↪→

45

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

17 else:
18 f.write("constraint set_in_reif({}, {{{}}}, {});\n".format(self.x,

','.join([str(e) for e in self.s]), self.r))↪→

The base class fzn implements access methods for each variable and constraint,
to make it easier to add new constraints or variables to the model. Since it is not
valid FlatZinc to have multiple declarations or definitions of the same variable,
these access methods check introduced_vars and defined_vars for duplicates
before adding the variables or the constraint to the model.

The implementation of the access methods fzn.int_var and fzn.set_in_reif is
defined in Listing 3.8 and 3.9 respectively.

Listing 3.8: Implementation of the access method for the integer variable object

1 def int_var(self, name, domain = 'int', output = False):
2 if domain == 'int':
3 print("WARNING: IntVar {} has unbound domain".format(name))
4 if name not in self.introduced_vars:
5 self.introduced_vars.add(name)
6 self.variables.append(IntVar(name, domain, output))
7 return name

Listing 3.9: Implementation of the access method for the element constraint object

1 def set_in_reif(self, var, arr, r, defines = None):
2 if defines is None:
3 self.constraints.append(SetInReif(var, arr, r, defines))
4 elif defines not in self.defined_vars:
5 self.defined_vars.add(defines)
6 self.constraints.append(SetInReif(var, arr, r, defines))
7 return defines

Finally fzn.write can be invoked to write the model to a file. This will loop
through all variables in variables and constraints in constraints in that order,
executing the write method of the object. The order is important since FlatZinc
requires variables to be introduced before being defined.

3.4.2 The itc2fzn Program
The itc2fzn program utilize functionality from the fzn module to write a FlatZinc
model from a ITC2019 instance file. When run, the input file will be read and
processed as described in Section 3.2, and the access methods from the fzn module
will be used to create the objects that represent the FlatZinc model.

46

3.4. THE FLATZINC MODEL

Schedule Penalties (SP)

Each class c has a set of feasible schedules Sc, which is represented by integers.
The variables Sc are introduced to the model for each class as follows:

Sc ∀c ∈ C, Sc ∈ Sc (3.19)

Each feasible schedule s ∈ Sc for a given class c have an associated penalty p,
denoted pcs, meaning that the objective function is penalized by pcs if schedule s is
chosen for class c. The total penalty for all classes and the schedules chosen for
these classes is modeled by a linear equation, where Scs is 1 if schedule s is chosen
for class c, and 0 otherwise.

SchedulePenalty =
∑

c∈C s∈Sc

pcs · Scs (3.20)

The writing of these variables and the SchedulePenalty is handled by the class_schedules
function as seen in Listing 3.10.

1 def class_schedules(self):
2 ...
3 for c in self.dat.classes:
4 self.fzn.int_var(self.dat.classes[c].schedule_var,
5 output=True,
6 domain="{{{}}}".format(','.join([
7 str(self.dat.unique_schedules[s].id)
8 for s in self.dat.classes[c].schedules
9])))

10

11 if self.include_soft_vars:
12 penalties = []
13 penalties.append(-1)
14 svars = []
15 svars.append("SchedulePenalty")
16 ub = 0
17 for c in self.dat.classes:
18 for s in self.dat.classes[c].schedules:
19 sched1 = self.dat.unique_schedules[s]
20 c1schedule1 = self.fzn.bool_var("C{}Schedule{}".format(
21 c, sched1.id))
22 self.fzn.int_eq_reif("C{0}_Schedule".format(c),
23 sched1.id,
24 c1schedule1,

47

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

25 defines=c1schedule1,
26 name="SchedulePenalty")
27 c1schedule1int = self.fzn.int_var(
28 "C{}Schedule{}int".format(c, sched1.id), domain='0..1')
29 self.fzn.bool2int(c1schedule1,
30 c1schedule1int,
31 defines=c1schedule1int,
32 name="SchedulePenalty")
33 penalties.append(self.dat.classes[c].schedule_penalty[s])
34 svars.append(c1schedule1int)
35 ub += self.dat.classes[c].schedule_penalty[s]
36

37 self.fzn.int_var("SchedulePenalty",
38 domain="0..{}".format(ub),
39 output=True)
40 self.fzn.int_lin_eq(penalties, # Linear Equation for SchedulePenalty
41 svars,
42 0,
43 defines="SchedulePenalty",
44 name="SchedulePenalty")
45 ...

Listing 3.10: Implementation of the FlatZinc generation of Schedule Penalties (SP)

As seen in line 40 the linear equation constraint object is created in the model for
calculating the SchedulePenalty. However, the linear equation is defined as:

0 =
(∑
c∈C s∈Sc

pcs · Scs
)
− 1 · SchedulePenalty

rather than the definition in Equation 3.20. The reason for this is the definition of
int_lin_eq in FlatZinc:
predicate int_lin_eq(array [int] of int: a,

array [int] of var int: b,
int c)

which constrains c = ∑
i ai · bi. However, c is not allowed to be a variable, thus

c is set to 0, and the variable SchedulePenalty is instead added to the array of
variables b.

Since RP is defined in a similar way, this will not be described any further.

Room Unavailabilities (RU)

The RU constraint enforces that a class cannot be scheduled into a room which
is declared unavailable at the time where the class takes place. During parsing of

48

3.4. THE FLATZINC MODEL

an ITC2019 instance, every room is associated with a set of schedules U where
the room is unavailable. The constraint can be enforced in the FlatZinc model by
looping through every schedule s ∈ S, and every schedule u ∈ U and check if these
schedules overlap. Two schedules s, u overlap if and only if the set of weeks, days
and time of the day overlap. That is

(s.weeks AND u.weeks) > 0 ∧
(s.days AND u.days) > 0 ∧
(s.end > u.start ∧ s.start ≤ u.start ∨ u.end > s.start ∧ u.start ≤ s.start∨
u.start ≤ s.start ∧ u.end > s.end ∨ s.start ≤ u.start ∧ s.end > u.end)

where AND is the binary “and”.

In case this condition is true, a constraint is introduced to the model for every
class c where room r is in the set of feasible rooms for class c, and schedule s is in
the set of feasible schedules for class c, that is r ∈ Rc and s ∈ Sc. The constraint is
defined as follows, where schedule u ∈ Ur for room r overlap with schedule s:

Sc 6= s ∨Rc 6= r ∀c ∈ C where r ∈ Rc, s ∈ Sc, u ∈ Ur where u and s overlap

The generation of FlatZinc can be seen in Listing 3.11.

1 def room_unavailable(self):
2 ...
3 for s in self.dat.unique_schedules:
4 sched = self.dat.unique_schedules[s]
5 for room in self.dat.rooms:
6

7 # Find out if room is available for schedule
8 available = True
9 for room_unavail in self.dat.rooms[room]['unavailable']:

10 ru_end = room_unavail['start'] + room_unavail['length']
11

12 # Week overlap
13 if (sched.weeks & room_unavail['weeks']).any():
14 # Day overlap
15 if (sched.days & room_unavail['days']).any():
16 # Time overlap
17 if (sched.end > room_unavail['start'] and sched.start

<= room_unavail['start']) \↪→

18 or (ru_end > sched.start and
room_unavail['start'] <= sched.start) \↪→

49

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

19 or (room_unavail['start'] <= sched.start and
ru_end > sched.end) \↪→

20 or (sched.start <= room_unavail['start'] and
sched.end > ru_end):↪→

21 available = False
22 break
23

24 # Prevent every class (with that room and schedule) from using that
combination↪→

25 if not available:
26 for c in self.dat.classes:
27 if s in self.dat.classes[
28 c].schedules and room in self.dat.classes[
29 c].rooms:
30 cnotroomr = self.fzn.bool_var(
31 "C{}NotRoom{}".format(c, room))
32 cnotscheds = self.fzn.bool_var(
33 "C{}NotSchedule{}".format(c, sched.id))
34 self.fzn.int_ne_reif("C{}_Room".format(c),
35 room,
36 cnotroomr,
37 defines=cnotroomr,
38 name="RoomUnavailabilities")
39 self.fzn.int_ne_reif("C{}_Schedule".format(c),
40 sched.id,
41 cnotscheds,
42 defines=cnotscheds,
43 name="RoomUnavailabilities")
44

45 self.fzn.array_bool_or([cnotscheds, cnotroomr],
46 True,

name="RoomUnavailabilities")↪→

47 i += 1
48 ...

Listing 3.11: Implementation of the FlatZinc generation for the RU constraint.

Schedule Overlaps (SO)

The SO constraint enforce that if two classes ci, cj are scheduled into the same
room, their schedules Si,Sj cannot overlap at any point. For the generation of
FlatZinc to enforce this constraint, it is checked if ci, cj have any feasible rooms in
common, and that at least one of the classes is not fixed. As previously mentioned
a fixed class is a class with only one feasible schedule, and none or one feasible
rooms. If both classes ci, cj are fixed, there is no possible way for the solver to
prevent an overlap, thus they should not overlap per the input data.

50

3.4. THE FLATZINC MODEL

In case at least one of the classes ci, cj is not fixed, and the classes share at least
one feasible room the following constraint will be written for each schedules si, sj
where si, sj overlap and si ∈ Sci

and sj ∈ Scj
:

Sci
6= si ∨ Scj

6= sj ∨Rci
6= Rcj

∀si ∈ Sci
, sj ∈ Scj

, ci, cj ∈ C

The implementation of the generation of these constraints can be seen in List-
ing 3.12.

1 def schedule_overlaps(self):
2 ...
3 for c1, c2 in itertools.combinations(self.dat.classes, 2):
4 if len(self.dat.classes[c1].rooms
5 & self.dat.classes[c2].rooms) > 0:
6 if not self.dat.classes[c1].is_fixed(
7) and not self.dat.classes[c2].is_fixed():
8 for s1, s2 in itertools.product(
9 self.dat.classes[c1].schedules,

10 self.dat.classes[c2].schedules):
11 if self.dat.schedule_overlaps[s1][s2]:
12 sched1 = self.dat.unique_schedules[s1]
13 sched2 = self.dat.unique_schedules[s2]
14 c1c2diffroom = self.fzn.bool_var(
15 "C{}C{}DiffRoom".format(c1, c2))
16 self.fzn.int_ne_reif("C{}_Room".format(c1),
17 "C{}_Room".format(c2),
18 c1c2diffroom,
19 defines=c1c2diffroom,
20 name="ScheduleOverlaps")
21 c1notsched1 = self.fzn.bool_var(
22 "C{}NotSchedule{}".format(c1, sched1.id))
23 c2notsched2 = self.fzn.bool_var(
24 "C{}NotSchedule{}".format(c2, sched2.id))
25

26 self.fzn.int_ne_reif("C{}_Schedule".format(c1),
27 sched1.id,
28 c1notsched1,
29 defines=c1notsched1,
30 name="ScheduleOverlaps")
31 self.fzn.int_ne_reif("C{}_Schedule".format(c2),
32 sched2.id,
33 c2notsched2,
34 defines=c2notsched2,
35 name="ScheduleOverlaps")
36

37 self.fzn.array_bool_or(

51

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

38 [c1notsched1, c2notsched2, c1c2diffroom],
39 True,
40 name="ScheduleOverlaps")

Listing 3.12: Implementation of the FlatZinc generation for the SO constraint.

Student Conflicts (SC)

A student conflict occurs when a student have to attend two classes at the same
time, or if there is not enough time to travel between rooms of the classes that the
student have to attend. This should not prevent a feasible solution, but should be
minimized. As described in Section 3.2.1 students are sectioned when parsing the
instance data, so the only job of the solver is to minimize student conflicts.

A student conflict can be described mathematically for two classes ci, cj ∈ C that a
student attends, where si ∈ Sci

, sj ∈ Scj
, ri ∈ Rci

, rj ∈ Rcj
and where drirj

is the
distance between room ri and rj. Considering a condition C ,

Csisjrirj
↔ (si.end + drirj

≤ sj.start) ∨ (3.21)
(sj.end + drirj

≤ si.start) ∨
(si.weeks AND sj.weeks) = 0 ∨ (si.days AND sj.days) = 0

if Csisjrirj
does not hold, the classes ci and cj cause a student conflict if Sci

= si,
Scj

= sj, Rci
= ri and Rcj

= rj. This means that if Csisjrirj
does not hold, if

the combinations of schedules and rooms are chosen for classes ci, cj, a penalty
should be added to the objective function. Thus, for each n cases where the
condition Csisjrirj

does not hold, a reified constraint is introduced to the FlatZinc
model:

conflictcicjk ↔ Sci
= si ∧ Scj

= sj ∧Rci
= ri ∧Rcj

= rj ∀k ∈ 1, . . . , n

for every student S and every combination of classes ci, cj ∈ CS that S attends,
and for every combination of si, sj, ri and rj.

The total penalty to be imposed on the objective function can then be calculated
using a linear equation, where p is the defined penalty for student conflicts for the
instance:

∑
ci,cj∈CS ,k∈{1,...,n}

p · conflictcicjk (3.22)

52

3.4. THE FLATZINC MODEL

summed over all students S .

The number of constraints to be created in the worst case, namely the number of
reifications of conflictcicjk can be described, where S is the set of students, C is
the set of classes, S is the set of schedules and R is the set of rooms, as:

|S| ×
(
C

2

)
× |S|2 × |R|2

As the generation of FlatZinc constraints for minimization of student conflicts in
the way described here is very costly in terms of memory and performance, the
generation of constraints for student conflicts was not included for any of the tests
described later in this thesis.

SameStart (SS)

The SS distribution constraint enforces every class in a set of classes C to start at
the same time, independent of the day and week of each class.

For every pair of classes ci,cj in C and for the cartesian product of the set of
feasible schedule of ci and cj respectively, if Si.start = Sj.start, Si,Sj is a feasible
combination of schedules for ci and cj respectively. Thus the constraint can be
expressed as

∨
si,sj∈S,ci,cj∈C

Sci
= si ∧ Scj

= sj (3.23)

where S =
{

(si, sj) | si ∈ Sci
, sj ∈ Scj

, si.start = sj.start
}
.

The code for enforcing this constraint can be seen in Listing 3.13.

1 def same_start_hard(self, classes, fzn, dat):
2 for c1,c2 in itertools.combinations(classes, 2):
3 pos_var = []
4 i = 1
5 for s1,s2 in itertools.product(dat.classes[c1].schedules,

dat.classes[c2].schedules):↪→

6 sched1 = dat.unique_schedules[s1]
7 sched2 = dat.unique_schedules[s2]
8

9 if sched1.start == sched2.start:
10 c1c2_samestart =

fzn.bool_var("C{0}C{1}SameStart{2}".format(c1,c2,i))↪→

53

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

11 fzn.array_bool_and(
12 [
13 "C{}Schedule{}".format(c1,sched1.id),
14 "C{}Schedule{}".format(c2,sched2.id)
15],
16 c1c2_samestart
17)
18 pos_var.append(c1c2_samestart)
19 i += 1
20

21 if len(pos_var)>0:
22 fzn.array_bool_or(pos_var, True)

Listing 3.13: Implementation of the SS (hard) constraint.

The soft variant of the SS constraint adds a penalty p to the objective function
for every pair of classes in a set of classes C that does not start at the same time.
Thus, this can be modelled by reification of the negation of the hard variant of
the SS constraint, and a linear equation with the penalties p as the coefficients,
and the reified values as the variables. Thus, the reified values are introduced as
follows:

DifferentStartn ↔
∨

si,sj∈S,ci,cj∈C
Sci

= si ∧ Scj
= sj (3.24)

where S =
{

(si, sj) | si ∈ Sci
, sj ∈ Scj

, si.start 6= sj.start
}

where n is a unique identifier.

Every N soft SS constraint is defined like this, and the DifferentStartn variable is
saved along with the penalty pn of the constraint.

When every soft SS constraint have been parsed, the total penalty of the constraint
can be defined as:

SameStartPenalty =
N∑
n=1

pnDifferentStartn (3.25)

The source code for handling a soft SS constraint, can be seen in Listing 3.14.

1 def same_start_soft(self, classes, fzn, dat, penalty):
2 for c1, c2 in itertools.combinations(classes, 2):
3 pos_var = []

54

3.4. THE FLATZINC MODEL

4 i = 1
5 for s1, s2 in itertools.product(dat.classes[c1].schedules,
6 dat.classes[c2].schedules):
7 sched1 = dat.unique_schedules[s1]
8 sched2 = dat.unique_schedules[s2]
9

10 if sched1.start != sched2.start:
11 c1c2_diffstarti = fzn.bool_var(
12 "C{0}C{1}DiffStart{2}".format(c1, c2, i))
13 fzn.array_bool_and([
14 "C{}Schedule{}".format(c1, sched1.id),
15 "C{}Schedule{}".format(c2, sched2.id)
16],
17 c1c2_diffstarti,
18 defines=c1c2_diffstarti,
19 name="SameStart_S")
20 pos_var.append(c1c2_diffstarti)
21 i += 1
22

23 if len(pos_var) > 0:
24 c1c2_diffstart = fzn.bool_var("C{}C{}DiffStart".format(c1, c2))
25 fzn.array_bool_or(pos_var, c1c2_diffstart, name="SameStart_S")
26

27 c1c2_diffstart_int = fzn.int_var("C{}C{}DiffStart_int".format(
28 c1, c2),
29 domain="0..1")
30 fzn.bool2int(c1c2_diffstart,
31 c1c2_diffstart_int,
32 defines=c1c2_diffstart_int,
33 name="SameStart_S")
34 self.soft_vars.append(c1c2_diffstart_int)
35 self.penalties.append(penalty)

Listing 3.14: Implementation of FlatZinc generation for the SS (soft) constraint.

Since FlatZinc generation for multiple of the distribution constraints are defined
using this technique, they will not be described in detail here. For those constraints
it is a matter of redefining S to the definition of the distribution constraint as
defined in Section 3.1. These constraints are, ST, DT, O and NO and the source
code the generation of these constraints can be found in the (Project Repository
n.d.), file itc2019/src/fzn/constraint.py.

SameDays (SD)

The SD distribution constraint is defined such that for a set of given classes, these
classes must be taught on the same days. For a pair of classes ci, cj where class ci
is taught more days per week than class cj, the days per week of cj should be a

55

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

subset of cj and vice versa.

For every pair of classes ci, cj ∈ C for a SD constraint, and for the cartesian product
of the set of feasible schedules Sci

,Scj
of class ci and cj respectively, if:

(
Sci

.days ∩ Scj
.days 6= Sci

.days
)
∧
(
Sci

.days ∩ Scj
.days 6= Scj

.days
)

(3.26)

the SD constraint does not hold for this combination of schedules Sci
,Scj

. If this is
the case, the following constraint is introduced in the model:

¬Sci
∨ ¬Scj

(3.27)

This prevents any pair of classes in the distribution constraint from being scheduled
such that the constraint does not hold. The implementation of this can be seen in
Listing 3.15.

1 def same_days_hard(self, classes, fzn, dat):
2 for c1, c2 in itertools.combinations(classes, 2):
3 for s1, s2 in itertools.product(dat.classes[c1].schedules,
4 dat.classes[c2].schedules):
5 sched1 = dat.unique_schedules[s1]
6 sched2 = dat.unique_schedules[s2]
7

8 if ((sched1.days | sched2.days) != sched1.days) and (
9 (sched1.days | sched2.days) != sched2.days):

10 c1notsched1 = fzn.bool_var("C{}NotSchedule{}".format(
11 c1, sched1.id))
12 c2notsched2 = fzn.bool_var("C{}NotSchedule{}".format(
13 c2, sched2.id))
14 fzn.int_ne_reif("C{}_Schedule".format(c1),
15 sched1.id,
16 c1notsched1,
17 defines=c1notsched1,
18 name="SameDays_H")
19 fzn.int_ne_reif("C{}_Schedule".format(c2),
20 sched2.id,
21 c2notsched2,
22 defines=c2notsched2,
23 name="SameDays_H")
24

25 fzn.array_bool_or([c1notsched1, c2notsched2],
26 True,
27 name="SameDays_H")

56

3.4. THE FLATZINC MODEL

Listing 3.15: Implementation of the generation of FlatZinc for the SD hard distri-
bution constraint

The soft variant of the SD constraint can be modeled by using the same con-
dition as defined in Equation (3.26) to find the number of violations of the SD
constraint.

For each pair ci, cj ∈ C of classes in a soft SD constraint with penalty p, a
set DifferentDayscicjsi

is introduced for each schedule si ∈ Sci
, that contains all

schedules sj ∈ Scj
where Equation 3.26 holds for si, sj. That is:

DifferentDayscicjsi
=
{
sj | cj ∈ C,Dcisicjsj

}
∀ci ∈ C, si ∈ Sci

where Dcisicjsj
=
(
si.days ∩ sj.days 6= si.days

)
∧
(
si.days ∩ sj.days 6= sj.days

)
A violation of the soft variant of the SD occurs for the pair of classes, if the chosen
schedule for cj, Scj

is in the set of schedules DifferentDayscicjSi
, that is:

Sci
∧ Scj

∈ DifferentDayscicjSci

Therefore, the total penalty for all n soft SD constraints where Ck is the set of
classes for SD constraint k, can be defined as:

SameDaysPenalty =
n∑
k=1

pk ·
(∑
ci,cj∈Ck, si∈Sci

Sci
= si ∧ Scj

∈ DifferentDayscicjsi

)

This linear equation impose a penalty on the objective function. The FlatZinc
generation of intermediate constraints that defines the number of violations can be
seen in Listing 3.16.

1 def same_days_soft(self, classes, fzn, dat, penalty):
2 for c1, c2 in itertools.combinations(classes, 2):
3 for s1 in dat.classes[c1].schedules:
4 diffdays_schedules = []
5 sched1 = dat.unique_schedules[s1]
6 for s2 in dat.classes[c2].schedules:
7 sched2 = dat.unique_schedules[s2]
8 if not (((sched1.days | sched2.days) == sched1.days) or
9 ((sched1.days | sched2.days) == sched2.days)):

57

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

10 diffdays_schedules.append(sched2.id)
11

12 c1s1c2_diffdays = fzn.bool_var("C{}DiffDays{}S{}".format(
13 c2, c1, sched1.id))
14 c2sched_diffdaysc1s1 = fzn.bool_var(
15 "C{}ScheduleDiffDaysC{}S{}".format(c2, c1, sched1.id))
16 c1schedule1 = fzn.bool_var("C{}Schedule{}".format(
17 c1, sched1.id))
18 fzn.set_in_reif("C{}_Schedule".format(c2),
19 diffdays_schedules,
20 c2sched_diffdaysc1s1,
21 defines=c2sched_diffdaysc1s1,
22 name="SameDays_S")
23 fzn.array_bool_and([c1schedule1, c2sched_diffdaysc1s1],
24 c1s1c2_diffdays,
25 defines=c1s1c2_diffdays,
26 name="SameDays_S")
27

28 self.soft_vars.append(c1s1c2_diffdays)
29 self.penalties.append(penalty)

Listing 3.16: Implementation of the FlatZinc generation for the soft SD constraint.

The generation of FlatZinc for DD, SW and DW is implemented in a similar
manner, and will not be described here. The source code for the generation of
FlatZinc for these constraints can be found in (Project Repository n.d.) in file
itc2019/src/fzn/constraint.py.

SameRoom (SR)

The FlatZinc generation for the SR constraint is the simplest of the constraints.
For every pair of classes in the constraint, the chosen room should be the same.
That is:

Rci
= Rcj

∀ci, cj ∈ C

The code for the generation of the FlatZinc is defined as follows, where classes is
the set of classes of a SR constraint:

1 def same_room_hard(self, classes, fzn):
2 for c1,c2 in itertools.combinations(classes, 2):
3 fzn.int_eq("C{}_Room".format(c1), "C{}_Room".format(c2))

For the soft variant of the SR constraint, the value of the objective function should
be penalized if two classes ci, cj of the constraint is not scheduled into the same

58

3.4. THE FLATZINC MODEL

room. The number of pairs of classes that violates the condition for a set of classes
Ck can be defined as the number of cases where ci and cj are scheduled into different
rooms. That is:

∑
ci,cj∈Ck

Rci
6= Rcj

Thus, if pk is the penalty of a soft SR constraint k for n soft SR constraints, then
the penalty to be imposed on the objective function can be defined as:

SameRoomPenalty =
n∑
k=1

pk ·
∑

ci,cj∈Ck

Rci
6= Rcj

For the generation of the FlatZinc for the violations of soft variants of the SR
constraint, the source code is as follows:

1 def same_room_soft(self, classes, fzn, penalty):
2 for c1,c2 in itertools.combinations(classes, 2):
3 diffroom = fzn.bool_var("DiffRoomC{0}C{1}".format(c1,c2))
4 fzn.int_ne_reif("C{}_Room".format(c1), "C{}_Room".format(c2), diffroom,

defines=diffroom)↪→

5

6 diffroom_int = fzn.int_var("DiffRoomC{0}C{1}_int".format(c1,c2),
domain="0..1")↪→

7 fzn.bool2int(diffroom, diffroom_int, defines = diffroom_int)
8

9 self.soft_vars.append(diffroom_int)
10 self.penalties.append(penalty)

Since the DR constraint is defined similarly to the SR constraint, this will not be
described any further. The source code for the DR constraint can be found in
the (Project Repository n.d.) in file itc2019/src/fzn/constraint.py.

SameAttendees (SA)

The SA constraint enforce that for a set of classes Ck, every pair of classes ci, cj ∈ Ck
is scheduled at times and in rooms such that it is possible to attend both classes,
taking into account the distance between the rooms chosen for the classes.

For a pair of feasible rooms for the classes ci, cj, ri ∈ Rci
and rj ∈ Rcj

and for a
pair of feasible schedules si ∈ Sci

and sj ∈ Scj
, if the distance between ri and rj is

denoted drirj
, the constraint holds for si, sj, ri and rj if:

59

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

Csisjrirj
↔ (si.end + drirj

≤ sj.start) ∨
(sj.end + drirj

≤ si.start) ∨
(si.weeks AND sj.weeks) = 0 ∨ (si.days AND sj.days) = 0

To avoid including the notion of weeks and days in the model, the condition C
can be used to model cases for classes ci, cj when the condition does not hold for a
combination of si, sj, ri and rj. Thus for every case where Csisjrirj

does not hold,
the following reified constraint is added to the model:

NotSameAttendeescicjk ↔ Sci
= si ∧ Scj

= sj ∧Rci
= ri ∧Rcj

= rj

∀si ∈ Sci
, sj ∈ Scj

, ri ∈ Rci
, rj ∈ Rcj

where ¬Csisjrirj
ci, cj ∈ Ck

For n hard SA distribution constraints, the SA constraint can then be enforced by
preventing all found cases where C does not hold. That is:

¬
∨

NotSameAttendeescicjk ∀ci, cj ∈ Ck, k ∈ {1, 2, . . . , n}

Another way this could be modeled would be to instead define a reified constraint
SameAttendeescicjk, and then enforce

∨
SameAttendeescicjk ∀ci, cj ∈ Ck, k ∈ {1, 2, . . . , n}

However, initial tests showed that by using the negation, less constraints were
introduced in the FlatZinc model in most cases, meaning that the number of cases
for two classes where the constraint does not hold is less than cases where the
constraint holds. The source code for the generation of FlatZinc for the hard
variant of the SameAttendees constraint can be seen in Listing 3.17.

1 def same_attendees_hard(self, classes, fzn, dat):
2 for c1, c2 in itertools.combinations(classes, 2):
3 pos_var = []
4 i = 1
5

6 for r1, r2 in itertools.product(dat.classes[c1].rooms,
7 dat.classes[c2].rooms):
8 c1room1 = fzn.bool_var("C{0}Room{1}".format(c1, r1))

60

3.4. THE FLATZINC MODEL

9 c2room2 = fzn.bool_var("C{0}Room{1}".format(c2, r2))
10 fzn.int_eq_reif("C{}_Room".format(c1),
11 r1,
12 c1room1,
13 defines=c1room1,
14 name="SameAttendees_H")
15 fzn.int_eq_reif("C{}_Room".format(c2),
16 r2,
17 c2room2,
18 defines=c2room2,
19 name="SameAttendees_H")
20

21 for s1, s2 in itertools.product(dat.classes[c1].schedules,
22 dat.classes[c2].schedules):
23 sched1 = dat.unique_schedules[s1]
24 sched2 = dat.unique_schedules[s2]
25

26 if (sched1.end + dat.rooms[r1]['travel'][r2] <=
27 sched2.start
28) or (sched2.end + dat.rooms[r2]['travel'][r1] <=
29 sched1.start) or (
30 not (sched1.weeks & sched2.weeks).any()) or (
31 not (sched1.days & sched2.days).any()):
32 pass
33 else:
34 fzn.bool_var("C{0}C{1}SameAttendees{2}".format(
35 c1, c2, i))
36 fzn.array_bool_and(
37 [
38 "C{}Schedule{}".format(
39 c1, sched1.id), "C{}Schedule{}".format(
40 c2, sched2.id), c1room1, c2room2
41],
42 "C{}C{}SameAttendees{}".format(c1, c2, i),
43 defines="C{}C{}SameAttendees{}".format(c1, c2, i),
44 name="SameAttendees_H")
45 pos_var.append("C{0}C{1}SameAttendees{2}".format(
46 c1, c2, i))
47 i += 1
48

49 if len(pos_var) > 0:
50 fzn.array_bool_or(pos_var, False, name="SameAttendees_H")

Listing 3.17: Implementation of FlatZinc generation for the hard SA constraint.

For the soft variant of the SA constraint, the same principles as described in this
section was used. Thus this will not be described any further. The source code for
the soft variant of the SA constraint can be found in the (Project Repository n.d.)

61

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

file itc2019/src/fzn/constraint.py.

Precedence (P)

The distribution constraint P states that for a ordered set of classes Ck, every
ordered pair ci, cj ∈ Ck, the class ci must be scheduled before class cj. In a case
where ci is scheduled before cj , ci is said to precede cj , which is equivalent of stating
that cj succeeds ci.

A class cj with schedule sj succeeds ci with schedule si if the first week of sj is
after the first week of si, or in case of the first week of si and sj is the same week,
the first day of sj is after the first day of si or if the first week and first day of si
and sj is the same, sj starts after si ends. That is:

(first(si.weeks) < first(sj.weeks)) ∨[
(first(si.weeks) = first(sj.weeks)) ∧[

(first(si.days) < first(sj.days)) ∨
((first(si.days) = first(sj.days)) ∧ (si.end ≤ sj.start))]

]
For the generation of the FlatZinc for constraint P for a set of classes Ck, for every
pair of classes ci, cj ∈ Ck, for a schedule si ∈ Sci

a set of schedules can be defined
as a subset of sj ∈ Scj

where all schedules in this set is schedules that succeed si.
That is:

succeedingsi
=
{
sj | sj ∈ Scj

where sj succeeds si
}
∀si ∈ Sci

, ci, cj ∈ Ck

This results in an array of sets, generated as follows:

1 succeeding = defaultdict(set)
2 for c1, c2 in itertools.combinations(dist['classes'], 2):
3 for s1 in self.dat.classes[c1].schedules:
4 sched1 = self.dat.unique_schedules[s1]
5 for s2 in self.dat.classes[c2].schedules:
6 sched2 = self.dat.unique_schedules[s2]
7

8 # succeed by week

62

3.4. THE FLATZINC MODEL

9 if sched1.first_week() < sched2.first_week():
10 succeeding[sched1.id].add(sched2.id)
11 elif sched1.first_week() == sched2.first_week():
12 # succeed by day
13 if sched1.first_day() < sched2.first_day():
14 succeeding[sched1.id].add(sched2.id)
15 elif sched1.first_day() == sched2.first_day():
16 # succeed by time
17 if sched1.end <= sched2.start:
18 succeeding[sched1.id].add(sched2.id)

This array of sets can be used to generate the constraints for the FlatZinc model
by the use of element constraints. For every pair of classes ci, cj , if both classes are
not fixed, then for every schedule si ∈ Sci

, the schedule of cj, Scj
should be in the

set of succeeding schedules of si. This gives a total of |Sci
| constraints for each pair

of classes ci, cj ∈ Ck, where at least one of them has to be true for the constraint P
to hold. That is:

∨
si∈Sci

Sci
= si ∧ Scj

∈ succeedssi
∀ci, cj ∈ Ck

This is implemented as follows in itc2fzn:

1 def precedence_hard(self, classes, fzn, dat, succeeding):
2 for c1, c2 in itertools.combinations(classes, 2):
3 pos = []
4 i = 1
5 if len(dat.classes[c1].schedules) > 1 or len(
6 dat.classes[c2].schedules) > 1:
7 for s1 in dat.classes[c1].schedules:
8 sched1 = dat.unique_schedules[s1]
9

10 c1schedule1 = fzn.bool_var("C{}Schedule{}".format(
11 c1, sched1.id))
12 fzn.int_eq_reif("C{0}_Schedule".format(c1),
13 sched1.id,
14 c1schedule1,
15 defines=c1schedule1,
16 name="Precedence_H")
17 c2succeedsc1 = fzn.bool_var("C{}SucceedsC{}S{}".format(
18 c2, c1, sched1.id))
19 fzn.set_in_reif("C{}_Schedule".format(c2),
20 succeeding[sched1.id],
21 c2succeedsc1,
22 defines=c2succeedsc1,
23 name="Precedence_H")

63

CHAPTER 3. AN EXTENDED FORMULATION: THE ITC2019 CASE

24 c1c2precedence = fzn.bool_var("C{}C{}Precedence_{}".format(
25 c1, c2, i))
26 fzn.array_bool_and([c2succeedsc1, c1schedule1],
27 c1c2precedence,
28 defines=c1c2precedence,
29 name="Precedence_H")
30 pos.append(c1c2precedence)
31 i += 1
32

33 fzn.array_bool_or(pos, True, name="Precedence_H")

Listing 3.18: Implementation of the integer variables (IntVar) object

The generation of FlatZinc is implemented for the remaining constraints as well,
that is WDS, MGG, MDD, MDLS, MBRR,S and MBLM,S. However, because of
their complexity and to keep implementational details to a minimum these are not
described in this thesis.

64

4 Formulation Encoding

Two formulations were presented in this thesis, namely the compact formulation and
the extended formulation. The two formulations are different and in this chapter
the key differences between the formulations will be presented, as well as a method
for encoding of a problem in compact form into a problem in extended form.

4.1 Differences
The compact and extended formulations presented in this thesis shows two different
ways of modeling timetabling problems. While some concepts and constraints are
present in both formulations, there are differences between them. These differences
will be summarized here to give a detailed but non-comprehensive overview.

Events and Classes The major difference between the compact and the extended
formulation is the difference between events and classes. In the compact
formulation, events have to be scheduled, where an event is a single occurrence
of a class of a course. In the extended formulation classes have to be schedules
where the notion of a class is a set of possibly recurring events of a course.

Sectioning of Students The sectioning of students is not a part of the problem
for the compact formulation. For the compact formulation, the list of classes
that a student is attending, is predetermined, but still imposes constraints
on the classes. For the extended formulation, the sectioning of the student is
a part of the problem, while imposing constraints on the classes.

Teachers The extended formulation does not include the notion of Teachers as
included in compact formulation.

Feasible Rooms In the compact formulation, it is not possible to limit the feasible
rooms for a specific event. The extended formulation defines a set of feasible
rooms for each class.

Room and Time Penalty In the compact formulation, it is not possible to prefer
a certain time or room for a given event. In the extended formulation this

65

CHAPTER 4. FORMULATION ENCODING

can be done by adding penalties to the feasible schedule and feasible rooms
of a class.

No Room For the compact formulation a room is needed for every event, whereas
the extended formulation allows classes to not have a room. As an example
this makes it possible to schedule online classes and similar events which does
not need a room.

Room and Time Stability In the compact formulation events of the same type
for the same course are allowed to take different rooms and different times,
however, the occurrence of this should be minimized for events of the same
type and course. In the extended formulation reoccuring classes are forced to
have the same time, days and duration every week.

Room Distances Distances between rooms are only included in the extended
formulation, but not in the compact formulation.

Room Restriction It is not possible to restrict or enforce a set of events to be
scheduled into the same room in the compact formulation.

Time Restriction It is not possible to restrict or enforce a set of events to be
scheduled into the same time of the day, nor to restrict or enforce a set
of events to be scheduled into the same days of the week for the compact
formulation. This can be enforced for a set of classes in the extended
formulation by using the distribution constraints SameTime, DifferentTime,
SameDays, DifferentDays, SameWeeks and DifferentWeeks.

Overlap It is not possible to enforce a set of events to overlap or not overlap
in the compact formulation. This can be done by using the Overlap and
NotOverlap constraints in the extended formulation.

Max One Event Per Course Per Day In the compact formulation, a constraint
enforce that only one event can occur per course per day. This constraint
does not exist in the extended formulation.

The two formulations may be used to model different kinds of timetabling problems.
While the extended formulation offer more control with regards to the relationship
between classes, the compact formulation might be better suited for timetabling
problems where these features is not necessary.

4.2 Encoding
A problem expressed in compact form can be encoded into extended form. The
process of this transformation will be described in this section, and we will refer

66

4.2. ENCODING

to Section 4.1 for an overview of the differences. Considering a model in compact
formMc, the model ofMc in extended form will be referred to asMx.

Time slots

Both the compact formulation and extended formulation includes the notion of a
time slot. Here it is assumed that the size of a time slot, and thus the number of
time slots per day, is the same forMc andMx.

Events ⇒ Classes

The events ofMc should be encoded into classes of Mx. For each event e ∈ E
where E is the set of events of M e, each event e corresponds to exactly one class
c ∈ C where C is the set of classes forMx. It is necessary to encode each event as
individual classes, sinceMx will enforce every event of a class in the modelMx to
start at the same time of the day, have the same duration, and occur on the same
days of the week, as defined by a schedule.

Since each event e has to be scheduled into any time slot for a specific week We, if
de is the duration of event e, the set of schedules for class c is every combination of
adjacent time slots of length de of a day for each day of week We.

As an example, and event e with duration 2 which have to be scheduled into the
second weeks of the semester, if the number of time slots per day is 6, then the
class can be defined in the ITC2019 instance format as follows:

...
<class id="1">

<time weeks="01000000" days="1000000" start="0" length="2">
<time weeks="01000000" days="1000000" start="1" length="2">
<time weeks="01000000" days="1000000" start="2" length="2">
<time weeks="01000000" days="1000000" start="3" length="2">
<time weeks="01000000" days="1000000" start="4" length="2">
<time weeks="01000000" days="0100000" start="0" length="2">
<time weeks="01000000" days="0100000" start="1" length="2">
...
<time weeks="01000000" days="0000001" start="4" length="2">

</class>
...

If Hd is the number of time slots per day, and Dw is the number of days per week,
then the total number of schedules to be introduced for a class is:

67

CHAPTER 4. FORMULATION ENCODING

Dw × (Hd − (de − 1))

Rooms

Rooms are defined in an identical way forMc andMx¸ thus these can be encoded
directly. For the set of time slots Tr where a room r is occupied as specified for a
modelMc, the room unavailabilities of r inMx can be defined using a bijective
function f . Let,

f : W ×D × S → Z+

and

f−1 : Z+ → W ×D ×H

such that every positive integer z ∈ Z+ maps to exactly one week W , day D and
time slot of day H.

For a given week w, day d, and time slot of the day h, and where Dw is the number
of days per week, Hd is the number of time slots per day,

f(w, d, h) = Dw ·Hd(w − 1) +Hd(d− 1) + h− 1

Then it is possible for each time slot z ∈ Tr to define room r as unavailable in week
w, on day d and in time slot of the day h by f−1(z).

As the set of feasible rooms for an event inMc is equal to the set of all rooms, all
rooms will also have to be added for each class c ofMx.

Teachers

The notion of teachers is a part of the compact formulation, but not the extended
formulation. However, constraints can be added toMx, such that it is possible
to enforce the same constraints as teachers impose onMc. The two constraints
imposed by teachers onMc is:

• A teacher may only teach one class at a time and

• a teacher may only teach if the teacher is available

68

4.2. ENCODING

The first constraint can be enforced by adding a NotOverlap constraint for each
teacher t, on the set of classes that t is teaching. The second constraint can be
enforced by removing schedules from each class c inMx, that a teacher is teaching,
such that no schedule of a class c overlap with a time slot where t is marked as
busy.

Precedences

Precedence constraints exists for bothMc andMx, with the difference that the
definition of precedences inMc is a list of pairs of events ei, ej where ei precede ej
where inMx precedences are defined for ordered sets of classes, where the classes
of each set should be scheduled to occur in that order.

This can be encoded directly fromMc toMx where a precedence constraint on
ci, cj is added toMx for every pair of precedences ofMc.

One Event per Course per Day

For the compact formulation, a constraint enforce that no more than one event for
every course can occur per day. This is not enforced in the extended formulation,
however the use of distribution constraints is able to enforce this. The MaxDayLoad
(MDL) distribution constraint can be used in some cases.

For every course C of an instance in Mc, introduce a MDLS constraint on all
corresponding classes ci ∈ CC ofMx. The parameter S for each MDL constraint
defines the number slots that may be occupied per day for each week, for the set of
classes. For a feasible solution to be found, this should be equal to the size of the
duration de of the event e with the highest duration. However, if more than one
other class of the constraint is smaller than or equal to de

2 , the constraint ofMc is
not guaranteed to hold forMx. As an example, one day with one class of duration
de, and another day with two classes each of duration ≤ de

2 would not violate the
constraint inMx, but would be violated forMc. Thus, the MDL constraint cannot
be used to model this constraint in all cases.

Another distribution constraint, namely the MaxBlockM,S (MBL) constraint, limits
the length of a block of two or more consecutive classes during a day, such that
there is no more than M slots in a block, and where two classes are considered
to belong to the same block if the gap between them is not more than S time
slots.

The MBLM,S constraint can be used to limit the number of classes per day of a
course. For each course C, add a MBLM,S constraint toMx on the set of all classes
of C. Let M = 1 and let S be the length of the day S = Hd. This will enforce that

69

CHAPTER 4. FORMULATION ENCODING

at most one classes of C is scheduled on any day. Adding a second class to the day,
would result in a block on the given day, and since M = 1, the length of a block
cannot exceed 1 time slot, the assignment would not be valid. If only one class
of C is scheduled on the given day, it is not a block, and thus this assignment is
valid.

This shows that a problem expressed in terms of the compact formulation can be
encoded into a problem expressed in terms of the extended formulation.

70

5 Computational Results

Tests were performed on all three models; the MiniZinc model for the compact
formulation, and the MiniZinc model and FlatZinc model for the extended formu-
lation. The nature of the instances used as input will be presented in Section 5.1,
the methods used for testing and the results from tests performed on the model for
the compact formulation will be presented in Section 5.2, and on the model for the
extended formulation in Section 5.3. Finally the findings and the validity of the
results will be discussed in Section 5.4.

The major advantage of using standardized modeling languages for modeling
constraint programming problems, such as MiniZinc and FlatZinc is that the same
model can be used for different solvers. A set of solvers was chosen to solve the
IMADA Timetabling problem and the ITC2019 problem. Not all the chosen solvers
were used for both problems, mainly because a subset of the solvers were only
discovered after starting the development of the model for the extended formulation.
The intersection between the set of solvers for each case should however still give a
good overview. The solvers were chosen based on their performance in the MiniZinc
Challenge1 which is an annual competition of constraint programming solvers,
with the exception of Chuffed which is included because it is included with the
standard installation of MiniZinc. Only open source solvers were chosen and a brief
description of each solver will be stated here.

Gecode (Gecode Team, 2006) The default solver of MiniZinc, based on Gecode
which is an open source toolkit for developing constraint-based systems
and applications. Gecode is developed in C++ and won gold medals in all
categories at the MiniZinc Challenges from 2008 to 2012.

Chuffed (Chuffed Team, n.d.) A lazy clause generation solver. Chuffed utilize
techniques to compute no-goods for reducing the search space.

Choco (Prud’homme, Fages, and Lorca, 2017) Solver for Constraint Programming
written in Java. Choco have won a total of nine bronze medals, four silver

1https://www.minizinc.org/challenge.html

71

https://www.minizinc.org/challenge.html

CHAPTER 5. COMPUTATIONAL RESULTS

medals and one gold medal in the MiniZinc Challenges from 2013 to 2018.

OR-Tools (Google’s OR-Tools n.d.) Constraint Programming Solver backed by
Google. Won four gold medals in the MiniZinc Challenge 2018, and have won
several medals every year since 2012 at the MiniZinc Challenge.

Yuck (Marte, n.d.) A constraint-based local-search solver written in Scala. Yuck
won silver medals at the MiniZinc Challenge 2017 and 2018 in the Local
Search category.

Oscar (OscaR Team, 2012) Another constraint-based local-search solver written
in Scala. Oscar won Bronze medals in the Local Search category in 2017 and
2018, and a gold medal in 2016 at the MiniZinc Challenge.

All tests in this chapter were performed on a computer with an Intel Core i7-4790
Quad-Core CPU @ 3.60GHz and 16 GB Random-access Memory (RAM).

5.1 Instances
For the compact formulation a MiniZinc model was made for the IMADA Timetabling
Problem. Real-world data from a semester at the Department of at Mathematics
and Computer Science at the University of Southern Denmark was used as input.
Details of the input data, named IMADA Instance can be seen in Table 5.1, which
contains the number of weeks, courses, students, events, teachers, and the number
of pairs of events of pairings and precedences. The size of the generated Dzn file is
given as well.

IMADA Instance
Weeks 15

Courses 10
Students 75
Rooms 2
Events 299

Pairings 255
Teachers 11

Precedences 1455
Dzn Size (KiB) 160.1

Table 5.1: Details of the IMADA Instance used as input data for the MiniZinc
model for the IMADA Timetabling Problem

72

5.2. THE COMPACT FORMULATION

Instances from ITC2019 contains anonymized real-world data from universities
around the world. These were used for the extended formulation and are split into
two sets of data sets. The first set will be referred to as the test sets of ITC2019,
and the second set will be referred to as the competition sets. Details about each
data set for the test set and competition set can be seen in Table 5.2.

The table shows the size of the instance in the ITC2019 XML instance format and
the number of courses, classes, rooms and students for each instance. Furthermore
the number of hard and soft distribution constraints are given for each instance,
along with the total number of schedules and the number of schedules that are
unique.

Distributions Schedules
Instance Size (MiB) Courses Classes Rooms Students Hard Soft Total Unique

wbg-fal10 0.47 21 150 7 19 56 26 4617 154
lums-sum17 0.2 19 20 62 0 2 0 340 93
bet-sum18 0.13 48 127 46 0 110 34 210 50
pu-cs-fal07 0.44 44 174 13 2002 68 34 2958 182
pu-llr-spr07 4.5 602 802 56 27881 194 135 8656 508
pu-c8-spr07 8.54 1036 2418 213 29514 1288 716 30538 896
agh-fis-spr17 14.57 340 1239 80 1641 823 400 145870 9655

agh-ggis-spr17 5.82 272 1852 44 2116 2202 488 46667 2836
bet-fal17 3.88 353 983 62 3018 861 390 23369 595
iku-fal17 12.61 1206 2641 214 0 2238 665 93398 588

mary-spr17 2.95 544 882 90 3666 3155 796 12328 620
muni-fi-spr16 1.41 228 575 35 1543 645 95 9556 789

muni-fsps-spr17 1.48 226 561 44 865 331 69 11356 1953
muni-pdf-spr16c 15.93 1089 2526 70 2938 1458 570 150567 2696

pu-llr-spr17 4.7 687 1001 75 27018 427 218 9292 993
tg-fal17 1.94 36 711 23 0 461 42 18384 1645

Table 5.2: Overview of instances of ITC2019, split into Test set (top) and Compe-
tition set (bottom).

As seen in Table 5.2, each instance includes a number of hard and soft distribution
constraints. A more detailed view of each instance is given in Table 5.3 for the
test set, and Table 5.4 for the competition set, where the number of hard and soft
constraints are given for each type of distribution constraint and instance.

5.2 The Compact Formulation
The MiniZinc model for the IMADA Timetabling problem was tested using Gecode,
Chuffed, Choco and OR-Tools. Because of the relatively small problem size, a
time limit of 900 seconds (15 minutes) was set for each of the solvers. The model

73

CHAPTER 5. COMPUTATIONAL RESULTS

wbg-fal10 lums-sum17 bet-sum18 pu-cs-fal07 pu-llr-spr07 pu-c8-spr07
H S H S H S H S H S H S

SS — — — — 2 3 — — 10 — 25 —
ST — — — — — — 8 — — — 27 —
DT — — — — — — — — 1 — 1 —
SD — — — — 10 9 — — 22 9 84 129
DD — — — — 2 2 — — 1 — 2 —
SW — — — — — — — — — — — —
DW — — — — — — — — — — — —
SR — — — — 28 10 — 8 24 4 70 106
DR — — — — — — — — — — — —
O — — — — — — — — — — — —

NO — 26 — — 1 1 8 26 4 110 173 346
SA 56 — 2 — 55 — 52 — 116 — 823 —
P — — — — — — — — — — 20 1

WD — — — — 12 7 — — 11 6 56 114
MG — — — — — 2 — — 5 6 7 20
MD — — — — — — — — — — — —

MDL — — — — — — — — — — — —
MBR — — — — — — — — — — — —
MBL — — — — — — — — — — — —

Table 5.3: Number of hard (H) and soft (S) distribution constraints of each type
for each ITC2019 test set.

was run 3 times for each solver on the IMADA Instance. Table 5.5 shows for each
solver, the value of the objective function for the first feasible solution found, the
value of the objective function for the best feasible solution found and the average
time (in seconds) for both.

The results with all intermediate feasible solutions for each solver can be seen in
Figure 5.1.

5.3 The Extended Formulation
Here the results from tests on the implementations of the extended formulation
will be presented. For the ITC2019 competition an online validator was available
for validating found solutions. This was used for finding the cost of each found
solution presented in this section.

5.3.1 The MiniZinc Model
Plans were made to test this model for 1 hour for each solver and instance. However,
limited time and unexpected circumstances meant that this was not done in time.
Errors were reported by the online validator for all but the smallest instances, but
it was not possible to locate the source of these problems in time.

74

5.3. THE EXTENDED FORMULATION

●●

●●●●●●●●● ●●● ●● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●● ●●●●●●●● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●● ●● ●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

1500

1550

1600

1650

1700

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

2350

2400

2450

2500

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850

Average Time (seconds)

V
al

ue
 o

f t
he

 O
bj

ec
tiv

e
fu

nc
tio

n

Solver
●

●

●

●

choco

chuffed

gecode

ortools

Value of the Objective Function over Time (Time limit = 900 seconds)

Figure 5.1: Results from running multiple solvers on the IMADA model

75

CHAPTER 5. COMPUTATIONAL RESULTS

5.3.2 FlatZinc Generation
FlatZinc models were generated using the implemented itc2fzn software described
in Section 3.4. The goal was to generate a FlatZinc model for each of the instances
of ITC2019. No time limit was imposed on the FlatZinc generation and statistics
about the number of generated constraints for each instance were gathered during
generation of each FlatZinc model. Since the first attempt to generate a FlatZinc
model for all instance of ITC2019 failed for some of the instances, two further
attempts were made where some constraints were removed from the problem. These
three attempts and the process and logic behind them will be described here. In all
attempts, the minimization of student conflicts were disabled as the implementation
of this is too ineffective. This will be described further in Section 5.4.

For reference, the number of constraints of each type can be seen in Table 5.3 and
5.4 which displays the number of constraints present in the instances.

First Attempt In the first attemt FlatZinc models were generated with the full
set of constraints (except minimization of student conflicts) and the number
of generated constraints introduced to each model can be seen in Table 5.6
and 5.7. As seen, generation of FlatZinc models for 5 of the instances failed,
namely agh-fis-spr17, agh-ggis-spr17, bet-fal17, iku-fal17 and muni-pdf-spr16c.
In all cases this was due to lack of memory.

Second Attempt As the first attempt to generate FlatZinc models failed for
some of the instance because of the memory restrictions, all soft constraints
were disabled to reduce the memory usage by itc2fzn. This will still create
valid models, since all hard constraints are still enforced. However, even after
disabling all soft constraints, the memory usage was still too high to generate
FlatZinc models for the 5 missing instances.

Third Attempt As seen in Table 5.6 and 5.7 the distribution constraint with the
highest number of introduced constraints on average is the SA, or SameAt-
tendees constraint. This constraint was disabled in this attempt, as another
attempt to reduce to memory usage by itc2fzn. This obviously produce
models where the SA constraints are allowed to be violated. However, this
attempt also failed, and FlatZinc models were never generated for the 5
missing instances.

5.3.3 Solving the FlatZinc Models
Since three different FlatZinc models were generated for each instance, tests were
made on each instance to try to understand the complexity of the problems. For
this, the solvers Gecode, Chuffed, Yuck, OR-Tools and Oscar were chosen as these

76

5.4. DISCUSSION

represents a variety of some of the best open source FlatZinc solvers available.

Each FlatZinc solver was executed 3 times with a time limit of 1 hour on each
of the generated FlatZinc models of each instance. For each instance and solver
where a result was found, the instances were validated using the online validator of
ITC2019. The following tables show the average of the reported cost, that is, the
value of the objective function, for all three tests on each solver and instance.

• In Table 5.8 the results can be seen for each solver and instance on the models
generated in the first attempt, that is, models where all constraints except
for the minimization of student conflicts are enabled.

• In Table 5.9 results from can be seen for each solver and instance on the
models generated in the second attempt, that is where all soft constraints
were excluded during the generation of the model.

• In Table 5.10 results from can be seen for each solver and instance on the
models generated in the third attempt, that is where the SA constraints were
excluded during generation of the model.

In all three tables, the 5 instances where the generation of a FlatZinc model failed
are disregarded. The symbols used in the tables are:

“—” No feasible solution found within the time limit.

N (N is a number), solver returned N as a feasible solution.

N∗ (N is a number), solver returned N as the optimal solution.

(N) (N is a number), solver returned N as the total cost, but there was unexpected
errors during validation.

5.4 Discussion
In this chapter results from the MiniZinc model for the compact formulation
and results from the MiniZinc model and the generated FlatZinc models were
presented.

Tests on the MiniZinc model for the compact formulation looks promising, and all
tested solvers were able to find feasible solutions for the IMADA case. Since this
was the only instance available for this model at the time, and since this is quite
small compared to the problems presented for the extended formulation, it is not
possible to conclude anything from these results. An obvious next step would have
been to model problems of ITC2019 in terms of the compact formulation. As seen
in Figure 5.1, the Choco solver gave solutions that does not look consistent with

77

CHAPTER 5. COMPUTATIONAL RESULTS

the solutions of the other solvers. It has not been possible to confirm within the
time limit of this thesis why this is, or if these solutions are valid.

Test results on the MiniZinc model made of the extended formulation were not
presented in this chapter. This was due to errors reported by the online validator
for the ITC2019 instances. This is unfortunate and suggests that one or more
constraints contain problems which were not uncovered within the time of writing.
Since the techniques used for modeling are quite different from the techniques
used for the generated FlatZinc models, the results would not have been directly
comparable. However, one major drawback compared to the generated FlatZinc
models can still be made.

For the MiniZinc model data will first have to be generated in the Dzn format.
This process takes a long time, much longer than generation of a FlatZinc model
as described in this thesis. This can partly be owed to the fact that the MiniZinc
model operates on the full set of schedules for each problem, while the generated
FlatZinc models only operate on the unique set of schedules. After the generation
of the data file, MiniZinc will be executed with the model file and data file as
input. This will generate a FlatZinc file, which will be passed to the chosen solver.
For the generation of FlatZinc models, these two steps of generating the data
and then generating the FlatZinc is done in one single step, before passing the
generated FlatZinc file to the solver. Thus, for the implemented generation of
FlatZinc models, the overhead introduced by MiniZinc is completely avoided.

During testing of the generated FlatZinc models of the extended formulation, results
were gathered from three different generated models for each instance and each
FlatZinc solver. While many of the solvers failed to find solutions for a large subset
of the instances, they provide an interesting insight in why the solvers failed to
find any feasible solutions in most cases.

As seen in Table 5.8, solutions are found for four instances by Oscar. These are,
as seen in Table 5.2, the four smallest instances in terms of the number of unique
schedules. Gecode, Chuffed and OR-Tools are only able to find solutions for the
two smallest instances. This might suggest that solvers based on Local Search have
an advantage in solving at least simple timetabling problems. However, this also
suggest that the complexity of a timetabling problem in the extended form relies
partly on the number of unique schedules present in a given problem.

This is not a surprising result, since many of the constraints in the extended
formulation are defined such that the complexity, in terms of the number of
introduced constraints, increases polynomially according to either the number of
unique schedules or the number of rooms. That is where C is the number of classes
of a distribution constraint, and S is the number of unique schedules, the number

78

5.4. DISCUSSION

of generated constraints for a distribution constraint can often be described as
being in the order of

(
C

2

)
× |S|2 or

(
C

2

)
× |R|2

in the worst case. In the average case however, this is often better since constraints
for a pair of classes is not generated if the features of the classes, e.g. the set of
feasible rooms for the classes, by themselves prevent the constraint from being
violated. However, for the central constraints of a problem, such as the SO
constraint, the number of constraints generated most likely approach

(
C

2

)
× |S|2

where C and S is the total number of classes and unique schedules of the prob-
lem.

From looking at the Tables 5.6 and 5.7 another problem is evident, namely the
number of constraints generated for the SA, or SameAttendees distribution con-
straint. This can be explained by its dependence on both rooms and schedules,
instead of just one or the other. That is, the number of generated constraints of a
SA distribution constraints, where C is the number of classes of the distribution
constraint and S and R is the number of schedules and rooms for the classes C
respectively, in the worst case the number of generated FlatZinc constraint will be
in the order of:

(
C

2

)
× |S|2 × |R|2

The same complexity applies for the minimization of student conflicts, since this is
essentially implemented in the same way as a soft SA constraint for the classes of
a student. In that case however, C is the total number of classes of the problem,
making it obvious why models were difficult to generate without disabling this
constraint.

By disabling all soft constraints, it is clear that it was easier for some solvers to
find a feasible solution for some instances. In this case however, Oscar was only

79

CHAPTER 5. COMPUTATIONAL RESULTS

able to find feasible solutions for two of the instances. Since the implementational
details of the solvers are out of scope for this thesis, it is unclear why this is, but it
could be suggested that for Oscar the soft constraints helps guide the solver to find
a feasible solution. Where Chuffed and Yuck were used as the solvers, more feasible
solutions were found when the soft constraints were not included in the problems.
This could be because of the smaller number of variables and constraints.

In two cases, namely using Chuffed on the problems muni-fi-spr16 and muni-fsps-
spr17, feasible solutions were found where the online validator of ITC2019 found
errors due to students not being sectioned correctly. This could be due to a problem
which will be summarized in Section 7.

In Table 5.10, even more solutions are found, although the results from this case
made it possible for the solvers to violate the SA constraint. Thus these solutions
are not feasible solutions to the initial problems. Especially Yuck excels here
by finding solutions for all but two of the problems. This clarifies that the SA
constraint is implemented in an insufficient way, which makes it too complex to
handle by the solvers. It also adds to the theory from this section, that local search
solvers such as Yuck and Oscar, might have an advantage on timetabling problems
expressed in the extended form.

In Section 4.2 it was described how a problem expressed in terms of the compact
formulation could be encoded into a problem expressed in terms of the extended
formulation, and showed that this conversion was theoretically possible. It was
described how the notion of events in the compact form can be encoded into classes
and schedules of the extended form. As presented each event is encoded into exactly
one class, and a number of schedules which in the worst case will be in the order
of:

Dw × (Hd − (de − 1))

for each class, where Dw is the number of days per week, Hd is the number of time
slots per day, and de is the duration of the event. As seen, the number of schedules
for each class is highly dependent on the number of time slots per day, Hd, which
is a combination of the length of the day and the size of each time slot for the
problem. However, the results presented in this chapter argues that the number
of schedules of a given problem in extended form affect the number of introduced
constraints dramatically. Thus, it can be argued that while the encoding is possible,
solvers might find some types of problems easier to solve when expressed in the
compact form, as opposed to the same problem expressed in extended form.

80

5.4. DISCUSSION

The opposite of this can be argued as well. Given a problem stated in terms of
the compact formulation on a large set of weeks and events, and a small set of
courses, many of these events could be recurring events of one course. In this
case, the number of corresponding classes and schedules in extended form, could
be considerably smaller than the number of events given in the compact form,
since one schedule is able to represent multiple events. This is however also largely
dependent on the number of time restrictions of each event.

In conclusion, these arguments show that the two formulations are different beside
what is stated in Chapter 4, and whether a given timetabling problem can be solved
or not might depend heavily on whether the right model was chosen.

81

CHAPTER 5. COMPUTATIONAL RESULTS

agh-fis-spr17
agh-ggis-spr17

bet-fal17
iku-fal17

m
ary-spr17

m
uni-fi-spr16

m
uni-fsps-spr17

m
uni-pdf-spr16c

pu-llr-spr17
tg-fal17

H
S

H
S

H
S

H
S

H
S

H
S

H
S

H
S

H
S

H
S

SS
—

—
—

—
4

—
—

1
—

—
—

—
—

—
1

—
45

6
—

—
ST

54
4

189
11

12
—

59
—

15
—

30
—

22
1

47
1

11
—

37
—

D
T

—
—

—
—

2
—

—
—

—
—

—
—

—
—

—
—

6
2

—
—

SD
54

17
448

71
22

125
229

11
53

29
59

10
37

2
64

—
15

37
37

14
D
D

11
3

3
1

195
132

2
—

—
—

8
7

2
—

—
—

4
1

—
12

SW
6

—
—

—
—

—
—

—
—

—
1

—
—

—
—

—
—

—
—

—
DW

—
—

—
—

—
—

—
—

—
—

—
—

—
—

382
1

—
—

—
—

SR
24

6
155

17
11

4
124

10
14

5
25

1
15

1
5

378
26

21
—

—
D
R

—
—

—
—

—
1

—
—

—
—

—
—

—
—

—
—

—
—

—
—

O
—

—
—

—
—

—
17

—
—

—
—

—
—

—
—

—
—

—
—

—
NO

1
6

2
4

3
—

490
1

—
111

9
42

1
64

—
126

23
115

325
—

SA
659

68
1124

—
419

5
1100

1
3025

628
404

—
191

—
570

—
292

—
62

4
P

4
273

31
324

—
—

47
631

10
—

73
26

52
—

383
1

1
5

—
—

W
D

—
3

250
55

144
4

170
10

32
6

31
7

11
1

4
15

4
25

—
12

M
G

—
—

—
—

—
119

—
—

6
17

—
—

—
—

—
—

—
4

—
—

M
D

10
6

—
3

10
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

M
D
L

—
—

—
—

1
—

—
—

—
—

2
—

—
—

1
29

—
—

—
—

M
BR

—
14

—
2

—
—

—
—

—
—

—
—

—
—

—
—

—
2

—
—

M
BL

—
—

—
—

38
—

—
—

—
—

3
2

—
—

1
19

—
—

—
—

Table
5.4:

N
um

ber
ofhard

(H
)
and

soft
(S)

distribution
constraints

ofeach
type

for
each

IT
C
2019

com
petition

set.

82

5.4. DISCUSSION

First feasible Time Best ub Time
Gecode 1830 32.77 1801 684.82
Chuffed 1830 43.01 1793 646.27
Choco 2524 80.75 1542 812.36

OR-Tools 1830 136.95 1797 797.50

Table 5.5: Summarized results for each solver on the MiniZinc model on the
IMADA Instance stating the first feasible solution found by the solver, and the
best upper-bound along with the time in seconds for both.

wbg-fal10 lums-sum17 bet-sum18 pu-cs-fal07 pu-llr-spr07 pu-c8-spr07
H S H S H S H S H S H S

SP 9235 681 421 5917 17313 61063
RP 862 1624 3978 780 26364 51560
SO 261600 14143 6132 59541 1804893 3591370
RU 0 10582 1117 0 893 20067
SS 0 1 0 1 6 19 0 1 153 1 1170 1
ST 0 1 0 1 0 1 216 1 0 1 247 1
DT 0 1 0 1 0 1 0 1 181 1 181 1
SD 0 1 0 1 0 94 0 1 23840 907 33202 4729
DD 0 1 0 1 4 7 0 1 0 1 204 1
SW 0 1 0 1 0 1 0 1 0 1 0 1
DW 0 1 0 1 0 1 0 1 0 1 0 1
SR 0 1 0 1 54 53 0 17 24 9 92 441
DR 0 1 0 1 0 1 0 1 0 1 0 1
O 0 2 0 2 0 2 0 2 0 2 2350 10

NO 0 48235 0 1 21 76 1561 53935 126 8140 10637 251011
SA 84907 1 263686 1 49879 1 4771 1 1597109 1 4409434 1
P 0 1 0 1 60 87 0 1 413 289 1716 2819

WD 0 1 0 1 0 9 0 1 40 249 56 422
MG 0 1 0 1 0 1 0 1 0 1 0 1
MD 0 1 0 1 0 1 0 1 0 1 0 1

MDL 0 1 0 1 0 1 0 1 0 1 0 1
MBR 0 1 0 1 0 1 0 1 0 1 0 1
MBL 0 1 0 1 0 1 0 1 0 1 0 1

Table 5.6: Number of hard (H) and soft (S) constraints introduced by the FlatZinc
generator itc2fzn for test sets of ITC2019, for each constraint.

83

CHAPTER 5. COMPUTATIONAL RESULTS

agh-fis-spr17
agh-ggis-spr17

bet-fal17
iku-fal17

m
ary-spr17

m
uni-fi-spr16

m
uni-fsps-spr17

m
uni-pdf-spr16c

pu-llr-spr17
tg-fal17

H
S

H
S

H
S

H
S

H
S

H
S

H
S

H
S

H
S

H
S

SP
24657

19113
22713

18585
36769

RP
21636

4818
2698

29452
6144

SO
2244030

703438
438395

1247520
666404

RU
1587

5185
2995

0
9506

SS
0

1
0

1
0

1
682

1443
0

1
ST

726
1

2539
1

11609
91695

1078
1

3798
1

D
T

0
1

0
1

0
1

275
18

0
1

SD
7900

2548
37074

901
91019

9007
8240

1783
16918

22462
D
D

0
1

532
694

854
1

449
154

0
994

SW
0

1
840

1
0

1
0

1
0

1
DW

0
1

0
1

0
1

0
1

0
1

SR
14

11
25

3
15

7
26

43
0

1
D
R

0
1

0
1

0
1

0
1

0
1

O
112

2
1199

592
2517

2
0

213
0

2
NO

0
50401

9521
63055

3
23329

7069
18235

63740
1

SA
4733438

405974
746218

1
932093

1
2959517

1
3379783

876311
P

112
2

1199
592

2517
2

0
213

0
2

M
G

114
851

0
1

0
1

0
57

0
1

W
D

814
237

2584
385

285
67

42
1073

0
625

M
D

0
1

0
1

0
1

0
1

0
1

M
D
L

0
1

0
1

0
1

0
1001

0
1

M
BR

0
1

48818
1

0
1

0
1

0
1

M
BL

0
1

659
3433

0
1

0
1

0
1

Table
5.7:N

um
berofhard

(H
)and

soft(S)constraintsintroduced
by

the
FlatZinc

generator
itc2fzn

forcom
petition

sets
ofIT

C
2019,for

each
constraint.

84

5.4. DISCUSSION

Instances gecode chuffed yuck ortools oscar
wbg-fal10 — — — — 546
lums-sum17 4* 4* — 48 4
bet-sum18 3321 2229 — 2788 1786
pu-cs-fal07 — — — — 1113
pu-llr-spr07 — — — — —
pu-c8-spr07 — — — — —
mary-spr17 — — — — —
muni-fi-spr16 — — — — —
muni-fsps-spr17 — — — — —
pu-llr-spr17 — — — — —
tg-fal17 — — — — —

Table 5.8: Average cost for each FlatZinc solver and ITC2019 Instance on generated
FlatZinc models with all constraints enabled.

Instances gecode chuffed yuck ortools oscar
wbg-fal10 — — 877 — 714
lums-sum17 51 88 69 — —
bet-sum18 — 3547 3389 3436 3421
pu-cs-fal07 — 2101 2058 — —
pu-llr-spr07 — — — — —
pu-c8-spr07 — — — — —
mary-spr17 — — — — —
muni-fi-spr16 — (23883) — — —
muni-fsps-spr17 — (163430) — — —
pu-llr-spr17 — — — — —
tg-fal17 — — — — —

Table 5.9: Average cost for each FlatZinc solver and instance on generated FlatZinc
models where all soft constraints were excluded.

Instances gecode chuffed yuck ortools oscar
wbg-fal10 — — 446 — 431
lums-sum17 4* 4* 4 48 4
bet-sum18 2368 1753 1727 2676 1628
pu-cs-fal07 — — 620 — 823
pu-llr-spr07 — — 63956 — —
pu-c8-spr07 — — — — —
mary-spr17 — — 50150 — —
muni-fi-spr16 — — 14917 — —
muni-fsps-spr17 — — — — —
pu-llr-spr17 — — — — —
tg-fal17 — — 4448 — —

Table 5.10: Average cost for each FlatZinc solver and instance on generated FlatZinc
models where the SameAttendees constraint were excluded.

85

6 Conclusion

In this thesis two formulations, a compact formulation and an extended formulation,
for modeling flexible timetabling problems were presented. Three implementations
were described, namely two models in the MiniZinc modeling language and one
method for FlatZinc model generation, based on the presented formulations.

The work in MiniZinc and FlatZinc throughout this thesis have been extensive.
The MiniZinc is heavily documented in Peter J. Stuckey (2018), and the language
makes it simple to model problems and use different solvers to solve them. However,
the cost of using MiniZinc is often in terms of transparency and flexibility. It is not
obvious how MiniZinc constraints are converted into FlatZinc, without spending
a lot of time analyzing the corresponding FlatZinc file. Furthermore, since this
transformation changes depending on the used solver, the process of finding which
constraints are too complex for a given solver can become very tedious, especially
without knowing how the utilized solver works. This becomes even more difficult
when a MiniZinc constraint in itself is complex. The FlatZinc language on the other
hand is too low-level for hand-written models, but very useful when generated as
described in this thesis. The biggest drawback have been in terms of the support
of the solvers, since these do not always implement the full FlatZinc specification.
When this is said the overall experience of using MiniZinc and FlatZinc for this
project have been overwhelmingly positive, and we definitely think they serve their
targeted purpose.

In Chapter 4 the differences between the compact and extended formulations
were given along with a method for encoding a problem in compact form into a
problem in extended form. This shows that the encoding is theoretically possible,
but as argued in Section 5.4, the resulting problem might be too computationally
difficult to solve in practice. Because of this, it is concluded that even though
the formulations are both flexible and can be used as foundations for modeling
real-world timetabling problems, they are very different, and able to accommodate
different types of timetabling problems. This is similar to the findings in Bettinelli
et al. (2015), and suggests that a universal one-size-fits-all solution is not possible
considering the complexity and differences of real-world university timetabling

86

problems.

In Chapter 5 results were presented from each of the implementations, along with
a discussion of the results with respect to the work of this thesis. Unfortunately
it was only possible to test one instance on the implementation of the compact
formulation within the time limit of this thesis. The size of this instance being
relatively small, it was possible for all tested solvers to find a feasible solution.
Larger problems would have been interesting for comparison with the results from
the tests of the extended formulation.

For the extended formulation it was stated that some constraints of the models are
more complex than others, and that the implementations might not be efficient
enough to handle these. However, the implemented models still provide insight
in how complex problems for timetabling of full semesters can be modeled and
solved using constraint programming. Given that some of the most recognized open
source solvers available were used in the making of this thesis, it is unfortunate
that it was not possible to find feasible solutions for all the presented problems.
Even when some of the complex constraints were removed from the model, the
problems were still too difficult to solve in most cases. This could indicate a
common problem in the implemented models for the extended formulation, or that
constraint programming solvers are simply not mature enough to solve problems
with the high complexity of timetabling problems.

For future research in the topic of timetabling problems, we suggest emphasizing
on flexible timetabling problems as described in this thesis, as opposed to research
on single-week, inflexible timetabling problems. These problems are often too
simplified to accommodate the needs of modern-day universities where timetabling
problems are often very complex. Further research on how the compact and the
extended formulations differ and the ideal purposes of each formulation could be
highly relevant, as well as an analysis of why constraint programming solvers fail to
solve the problems of the extended formulation presented in this thesis. Since the
solvers based on local search techniques generally performed better than the other
constraint programming solvers, we think that research in this direction could be
successful if the right precautions are taken.

87

7 Future Work & Known Issues

This section will list a few improvements that could be made to this work in the
future, along with problems discovered for which there was not time enough to fix
before the deadline.

Ideas for improvements:

• During the implementation of the MiniZinc model for the extended formula-
tion, it was not discovered that many schedules were actually unique. This fact
could be used to improve the implementation as done in the implementation
of the generation of FlatZinc models.

• Adding search annotations to the FlatZinc model. MiniZinc and FlatZinc
supports search annotations which can be used for some solvers as guidance.
These might have a great impact on the solutions, if supported by the solver.

Known issues discovered during writing which should be fixed in the future:

Section 2.2.3 The soft constraint S3 is defined as

Events of the same type should preferably be scheduled in the same room every
week

In the model, the constraint counts the discrepancy between rooms of a
pair of events. This is not correctly implemented, since this would impose
larger penalty on the objective function for two rooms which have a larger
discrepancy in the set of rooms R. Instead, a fixed penalty should be imposed
if two events does not share the same room.

Section 3.2.1 The sectioning of students for the International Timetabling Prob-
lem is described. However, while the algorithm for sectioning of students
work in most cases there could be cases where it does not. In particular, there
could be cases where a child class of a class have less available spots than its
parent class. In this case, the algorithm should back-track to another class of
the subsection.

88

Section 3.3 Not all constraints are implemented for the MiniZinc model of the
extended formulation. These were non-trivial to implement in MiniZinc, and
attempts were made, but it was not possible to find a working solution for
these within the time limit.

89

References

Alberg, Brian (2018). “Solving the IMADA Timetabling Problem using Constraint-
Based Local Search”. Individual Study Activity.

Bettinelli, Andrea et al. (2015). “An overview of curriculum-based course timetabling”.
In: Top 23(2), pp. 313–349.

Burke, Edmund K et al. (2010). “A supernodal formulation of vertex colouring with
applications in course timetabling”. In: Annals of Operations Research 179(1),
pp. 105–130.

Chuffed Team (n.d.). Chuffed: The Chuffed CP solver. url: https://github.com/
chuffed/chuffed.

Gecode Team (2006). Gecode: Generic constraint development environment. url:
http://www.gecode.org.

Google’s OR-Tools (n.d.). Google. url: https://developers.google.com/optimization/.
Koch, Thorsten et al. (2011). “MIPLIB 2010”. In: Mathematical Programming
Computation 3(2), p. 103.

Marte, Michael (n.d.). Yuck: A constraint-based local-search solver with FlatZinc
interface. url: https://github.com/informarte/yuck.

Müller, Tomáš, Hana Rudová, and Zuzana Müllerová (2018). “University course
timetabling and International Timetabling Competition 2019”. In: PATAT 2018
– Proceedings of the 12th International Conference on the Practice and Theory of
Automated Timetabling (PATAT 2018), pp. 5–31.

Nethercote, Nicholas et al. (2007). “MiniZinc: Towards a standard CP modelling
language”. In: International Conference on Principles and Practice of Constraint
Programming. Springer, pp. 529–543.

OscaR Team (2012). OscaR: Scala in OR. url: https://bitbucket.org/oscarlib/
oscar.

Peter J. Stuckey Kim Marriott, Guido Tack (2018). MiniZinc Handbook.
Project Repository (n.d.). The repository is also attached with the delivery of this
thesis. url: https://git.imada.sdu.dk/march/GLS.

Prud’homme, Charles, Jean-Guillaume Fages, and Xavier Lorca (2017). Choco
Documentation. TASC - LS2N CNRS UMR 6241, COSLING S.A.S.

90

https://github.com/chuffed/chuffed
https://github.com/chuffed/chuffed
http://www.gecode.org
https://developers.google.com/optimization/
https://github.com/informarte/yuck
https://bitbucket.org/oscarlib/oscar
https://bitbucket.org/oscarlib/oscar
https://git.imada.sdu.dk/march/GLS

REFERENCES

91

	Introduction
	A Compact Formulation: the IMADA case
	The IMADA Timetabling Problem
	MiniZinc Model
	Notation
	Hard Constraints
	Soft Constraints
	The Objective Function

	An Extended Formulation: the ITC2019 case
	The ITC2019 Problem
	Processing of Instances
	Sectioning of Students
	Schedules and Classes

	The MiniZinc Model
	Data Creation
	The Model

	The FlatZinc Model
	The fzn Module
	The itc2fzn Program

	Formulation Encoding
	Differences
	Encoding

	Computational Results
	Instances
	The Compact Formulation
	The Extended Formulation
	The MiniZinc Model
	FlatZinc Generation
	Solving the FlatZinc Models

	Discussion

	Conclusion
	Future Work & Known Issues

